Navigation Links
Bone-growing nanomaterial could improve orthopaedic implants
Date:9/22/2007

PROVIDENCE, R.I. [Brown University] For orthopaedic implants to be successful, bone must meld to the metal that these artificial hips, knees and shoulders are made of. A team of Brown University engineers, led by Thomas Webster, has discovered a new material that could significantly increase this success rate.

The team took titanium the most popular implant material around and chemically treated it and applied an electrical current to it. This process, called anodization, creates a pitted coating in the surface of the titanium. Webster and his team packed those pits with a cobalt catalyst and then ran the samples through a chemical process that involved heating them to a scorching 700 C. That caused carbon nanotubes to sprout from each pit.

Researchers then placed human osteoblasts, or bone-forming cells, onto the nanotube-covered samples as well as onto samples of plain and anodized titanium. The samples were placed in an incubator. After three weeks, the team found that the bone cells grew twice as fast on the titanium covered in nanotubes. Cells interacting with the nanotubes also made significantly more calcium the essential ingredient for healthy bones.

Results are published in Nanotechnology.

What we found is possibly a terrific new material for joint replacement and other implants, said Webster, associate professor of engineering at Brown. Right now, bone doesnt always properly meld to implants. Osteoblasts dont grow or grow fast enough. Adding carbon nanotubes to anodized titanium appears to encourage that cell growth and function.

Websters long-term vision for the new material is ambitious. With it, Webster hopes to create a new class of implants ones that can sense bone growth then send that information to an external device. Doctors could monitor the output and determine whether to inject growth hormones or otherwise intervene to avoid additional surgery. Right now, implant patients must get an X-ray or undergo a bone scan to monitor bone growth.

Webster thinks these biosensing implants could even be designed to detect infection and be specially coated to release antibiotics or other drugs into the body.

Webster said the biosensing concept would work because when cells make calcium, an electrical current is created. That current can be conducted through carbon nanotubes and transmitted via radio frequency to a handheld device outside the body a similar process to the one employed by state-of-the-art cardiac pacemakers.

This technology would be incredibly exciting, Webster said. It could significantly improve patient health and cut down on expensive diagnostic tests and surgery. We still have a long way to go to make an intelligent implant a reality, but our new results are a strong first step.


'/>"/>

Contact: Wendy Lawton
Wendy_Lawton@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology technology :

1. IRS ruling could speed healthcare technology adoption
2. Tech upstart VoVision could disrupt the voice-recognition market
3. Its not Y2K, but changes to Daylight Saving Time could cause tech problems
4. Software tax dispute could go the Supreme Court
5. CellCura could start an invasion of stem cell firms
6. Businesses could bridge digital divide in Milwaukee with used computers
7. Inventions could fall prey to Monday morning quarterbacking
8. Milwaukee could be wireless in 18 months
9. Venture-backed firms could become eligible for federal SBIR grants
10. Protein lab could prosper under new owner
11. Nano-diamond film studied at UW could advance telecommunications
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... ... October 10, 2017 , ... ... (ADC) therapeutics, today confirmed licensing rights that give it exclusive global access ... developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, an ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... ... ... The award-winning American Farmer television series will feature 3 Bar Biologics in an ... on RFD-TV. , With global population estimates nearing ten billion people by 2050, ... a growing nation. At the same time, many of our valuable resources are becoming ...
(Date:10/7/2017)... Phoenix, Arizona (PRWEB) , ... ... ... than 15 years’ experience providing advanced instruments and applications consulting for microscopy ... the in-house expertise in application consulting, Nanoscience Analytical offers a broad range ...
Breaking Biology Technology:
(Date:8/23/2017)... , Aug. 23, 2017  The general public,s help is being ... microbiome—the bacteria that live in and on the human body –and are ... The Microbiome ... the human microbiome, starting with the gut. The project's goal is to ... Photo credit: IBM ...
(Date:7/20/2017)... Delta (NYSE: DAL ) customers now can use ... Reagan Washington National Airport (DCA). ... Delta launches biometrics to board aircraft at Reagan Washington ... Delta,s biometric boarding pass experience that ... integrated into the boarding process to allow eligible Delta SkyMiles Members who ...
(Date:6/23/2017)... and ITHACA, N.Y. , June 23, ... University, a leader in dairy research, today announced a ... to help reduce the chances that the global milk ... of this dairy project, Cornell University has become the ... the Food Supply Chain, a food safety initiative that ...
Breaking Biology News(10 mins):