Navigation Links
Bone-growing nanomaterial could improve orthopaedic implants
Date:9/22/2007

PROVIDENCE, R.I. [Brown University] For orthopaedic implants to be successful, bone must meld to the metal that these artificial hips, knees and shoulders are made of. A team of Brown University engineers, led by Thomas Webster, has discovered a new material that could significantly increase this success rate.

The team took titanium the most popular implant material around and chemically treated it and applied an electrical current to it. This process, called anodization, creates a pitted coating in the surface of the titanium. Webster and his team packed those pits with a cobalt catalyst and then ran the samples through a chemical process that involved heating them to a scorching 700 C. That caused carbon nanotubes to sprout from each pit.

Researchers then placed human osteoblasts, or bone-forming cells, onto the nanotube-covered samples as well as onto samples of plain and anodized titanium. The samples were placed in an incubator. After three weeks, the team found that the bone cells grew twice as fast on the titanium covered in nanotubes. Cells interacting with the nanotubes also made significantly more calcium the essential ingredient for healthy bones.

Results are published in Nanotechnology.

What we found is possibly a terrific new material for joint replacement and other implants, said Webster, associate professor of engineering at Brown. Right now, bone doesnt always properly meld to implants. Osteoblasts dont grow or grow fast enough. Adding carbon nanotubes to anodized titanium appears to encourage that cell growth and function.

Websters long-term vision for the new material is ambitious. With it, Webster hopes to create a new class of implants ones that can sense bone growth then send that information to an external device. Doctors could monitor the output and determine whether to inject growth hormones or otherwise intervene to avoid additional surgery. Right now, implant patients must get an X-ray or undergo a bone scan to monitor bone growth.

Webster thinks these biosensing implants could even be designed to detect infection and be specially coated to release antibiotics or other drugs into the body.

Webster said the biosensing concept would work because when cells make calcium, an electrical current is created. That current can be conducted through carbon nanotubes and transmitted via radio frequency to a handheld device outside the body a similar process to the one employed by state-of-the-art cardiac pacemakers.

This technology would be incredibly exciting, Webster said. It could significantly improve patient health and cut down on expensive diagnostic tests and surgery. We still have a long way to go to make an intelligent implant a reality, but our new results are a strong first step.


'/>"/>

Contact: Wendy Lawton
Wendy_Lawton@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology technology :

1. IRS ruling could speed healthcare technology adoption
2. Tech upstart VoVision could disrupt the voice-recognition market
3. Its not Y2K, but changes to Daylight Saving Time could cause tech problems
4. Software tax dispute could go the Supreme Court
5. CellCura could start an invasion of stem cell firms
6. Businesses could bridge digital divide in Milwaukee with used computers
7. Inventions could fall prey to Monday morning quarterbacking
8. Milwaukee could be wireless in 18 months
9. Venture-backed firms could become eligible for federal SBIR grants
10. Protein lab could prosper under new owner
11. Nano-diamond film studied at UW could advance telecommunications
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/29/2016)... Irvine, CA (PRWEB) , ... April 29, 2016 ... ... research leader in personalized pain medicine, is excited to announce the launch of ... to supporting public health studies, volunteerism, and education to promote the use of ...
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced today that the two-level ... sale in the United States. These components expand the capabilities of the system ... sales beginning in October of 2015, the company has seen significant sales growth in ...
(Date:4/28/2016)... MA (PRWEB) , ... April 28, 2016 , ... ... Asymmetrex will deliver a talk on its first-in-class technologies for tissue ... 2016 Meeting on RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome Engineering ...
(Date:4/27/2016)... , ... April 27, 2016 , ... The Pittcon Organizing ... 2019. Chuck has been a volunteer member of Committee since 1987. Since then, ... board of directors and treasurer and was chairman for both the program and exposition ...
Breaking Biology Technology:
(Date:3/14/2016)... Allemagne, March 14, 2016 ... - --> - Renvoi : image disponible ... --> --> DERMALOG, ... fournit de nouveaux lecteurs d,empreintes digitales pour l,enregistrement ... DERMALOG sera utilisé pour produire des cartes d,identité ...
(Date:3/11/2016)... March 11, 2016 --> ... research report "Image Recognition Market by Technology (Pattern Recognition), ... Advertising), by Deployment Type (On-Premises and Cloud), by Industry ... published by MarketsandMarkets, the global market is expected to ... 29.98 Billion by 2020, at a CAGR of 19.1%. ...
(Date:3/10/2016)... BLUE BELL, Pa. , March 10, 2016   ... U.S. Customs and Border Protection (CBP) is testing ... in San Diego to help identify ... United States . The test, designed to help determine ... outdoor, pedestrian environment, began in February and will run until ...
Breaking Biology News(10 mins):