Navigation Links
Blocked holes can enhance rather than stop light going through

Conventional wisdom would say that blocking a hole would prevent light from going through it, but Princeton University engineers have discovered the opposite to be true. A research team has found that placing a metal cap over a small hole in a metal film does not stop the light at all, but rather enhances its transmission.

In an example of the extraordinary twists of physics that can occur at very small scales, electrical engineer Stephen Chou and colleagues made an array of tiny holes in a thin metal film, then blocked each hole with an opaque metal cap. When they shined light into the holes, they found that as much as 70 percent more light came through when the holes were blocked than when they were open.

"The common wisdom in optics is that if you have a metal film with very small holes and you plug the holes with metal, the light transmission is blocked completely," said Chou, the Joseph Elgin Professor of Engineering. "We were very surprised."

Chou said the result could have significant implications and uses. For one, he said, it might require scientists and engineers to rethink techniques they have been using when they want to block all light transmission. In very sensitive optical instruments, such as microscopes, telescopes, spectrometers and other optical detectors, for example, it is common to coat a metal film onto glass with the intention of blocking light. Dust particles, which are unavoidable in metal film deposition, inevitably create tiny holes in the metal film, but these holes have been assumed to be harmless because the dust particles become capped and surrounded by metal, which is thought to block the light completely.

"This assumption is wrong -- the plug may not stop the leakage but rather greatly enhance it," Chou said.

He explained that in his own field of nanotechnology, light is often used in a technique called photolithography to carve ultrasmall patterns in silicon or other materials. Thin metal film patterns on a glass plate serve as a mask, directing light through certain locations of the plate and blocking other locations. Given the new finding, engineers ought to examine whether the mask blocks the light as expected, Chou said.

Conversely, Chou said, the newly discovered "blocking" technique might be used in situations when a boost in light transmission is desired. In near-field microscopy, for example, scientists view extremely fine details by passing light through a hole as tiny as billionths of a meter in diameter. With the new technique, the amount of light passing through the hole -- and thus the amount of information about the object being viewed -- can be increased by blocking the hole.

Chou and colleagues stumbled on the phenomenon of enhanced light transmission through a blocked hole in their research on developing ultrasensitive detectors that sense minute amounts of chemicals, with uses ranging from medical diagnostics to the detection of explosives. These detectors use a thin metal film with an array of holes and metal disks to boost faint signals produced when laser light encounters a molecule, allowing much greater sensitivity in identifying substances.

In one of their experimental detectors, the researchers studied transmission of light through an array of tiny holes that were 60 nanometers (billionths of a meter) in diameter and 200 nanometers apart in a gold film that was 40 nanometers thick. Each tiny hole was capped with a gold disk that was 40 percent larger than the hole. The disks sat on top of the holes with a slight gap between the metal surface and the disks.

The researchers pointed a laser at the underside of the film and tested to see if any of the laser light went through the holes, past the caps, and could be detected on the other side. To their surprise, they found that the total light transmission was 70 percent higher with the holes blocked by the metal disks than without blockers. The researchers repeated the same experiment shining the light in the opposite direction -- pointing at the side with the caps and looking for transmitted light under the film -- and found the same results.

"We did not expect more light to get through," Chou said. "We expected the metal to block the light completely."

Chou said the metal disk acts as a sort of "antenna" that picks up and radiates electromagnetic waves. In this case, the metal disks pick up light from one side of the hole and radiate it to the opposite side. The waves travel along the surface of the metal and leap from the hole to the cap, or vice versa depending on which way the light is traveling. Chou's research group is continuing to investigate the effect and how it could be applied to enhance the performance of ultrasensitive detectors.

Contact: Steven Schultz
Princeton University, Engineering School

Related biology technology :

1. Second U.S.-Egypt Collaborative Clinical Study Blocked by New York State Department of Health (NYSDOH), This Time on Complications of Diabetes
2. Women More Likely Than Men to Avoid Amputation After Minimally Invasive Therapy for Blocked Leg Arteries
3. VAP(R) Cholesterol Test From Atherotech Covers an Additional 9 Million of Florida Insured
4. Atherotech to Exhibit VAP(R) Cholesterol Test at American Heart Association Scientific Sessions 2008
5. VAP(R) Cholesterol Test Helps Researchers Identify Treatment Effects of Combination Therapy
6. VAP Cholesterol Test Helps In Search For New Heart Disease Drugs
7. Atherotech to Exhibit the VAP(R) Cholesterol Test at ACC.09 in Orlando
8. First Application to Fight High Cholesterol Launches on the iPhone and iPod Touch
9. Atherotech to Exhibit its VAP(R) Cholesterol Test at Internal Medicine 2009 in Philadelphia
10. VAP(R) Cholesterol Test Now Available at ANY LAB TEST NOW(R)
11. Box maker, Wildcat Wholesale, Makes Cryogenic Freezer Storage Boxes Affordable By Selling Directly To Labs
Post Your Comments:
Related Image:
Blocked holes can enhance rather than stop light going through
(Date:11/24/2015)... SAN DIEGO , Nov. 24, 2015 Halozyme Therapeutics, ... Jaffray Healthcare Conference in New York on ... Dr. Helen Torley , president and CEO, will provide a ... New York at 1:00 p.m. ET/10:00 a.m. ... communication and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... ... 24, 2015 , ... The Academy of Model Aeronautics (AMA), led by its ... as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , FPV ... embraced this type of racing and several new model aviation pilots have joined the ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
Breaking Biology Technology:
(Date:11/10/2015)... 2015 About signature verification ... to identify and verify the identity of an ... the secure and accurate method of authentication and ... individual because each individual,s signature is highly unique. ... dynamic signature of an individual is compared and ...
(Date:10/29/2015)... MINNETONKA, Minn. , Oct. 29, 2015   ... that supports the entire spectrum of clinical research, is ... the Minnesota High Tech Association (MHTA) as one of ... in the "Software – Small and Growing" category. The ... and individuals who have shown superior technology innovation and ...
(Date:10/29/2015)... 2015 NXTD ) ("NXT-ID" ... on the growing mobile commerce market and creator ... a leading marketplace to discover and buy innovative ... wallet on StackSocial for this holiday season.   ... "Company"), a biometric authentication company focused on the ...
Breaking Biology News(10 mins):