Navigation Links
Bioprinting has promising future
Date:11/15/2012

Writing in the journal Science, Professor Derby of The School of Materials, looks at how the concept of using printer technology to build structures in which to grow cells, is helping to regenerate tissue.

Both inkjet and laser printer technology can be used to build the 3D scaffolds that cells can be grown in and also place the cells in these structures simultaneously. Professor Derby explains how bioprinting works: "Inkjet technology places the structure's material in small droplets, which then solidify. More droplets are then placed on top of the previous ones in a specific pattern. The structure is built using this method which is generally referred to as additive manufacture.

"Laser printing uses light to solidify the structure's material layer upon layer. These methods have allowed us to develop very complex scaffolds which better mimic the conditions inside the body."

The scaffold provides a surface for the cells to adhere, thrive and multiply. Both the scaffold material, composition and its internal architecture control the behaviour and well-being of the cells inside.

In his review article Professor Derby looks at experiments where porous structures have been made through bioprinting. They are then placed in the body to help act as a scaffold to encourage cell growth. The cells colonize the structure and it either dissolves or becomes part of the body.

This type of treatment can help patients suffering from problems such as cavity wounds. Clinical trials are currently taking place around the world to perfect this technology, and Professor Derby says it is moving towards becoming an established form of science.

Professor Derby also looks at how stem cells are being grown in printed structures that have been impregnated with certain chemicals. The chemicals are inserted during the printing process and can determine the type of cell the stem cells develop into. For example stem cells could be programmed to become cells that make up bone tissue or cartilage.

But there are limitations to the technology which is holding back breakthroughs such as the ability to grow an entire organ. Studies have found that it is very difficult to actually print the cells at the same time as making the structure that will house them. The stress on the cell as it goes through both the inkjet and laser process can damage the cell membrane. Cell survival rates have also been variable, ranging from between 40 to 95%.

The technology is also some way off progressing from an experimental platform to clinical practice. Whilst scaffolds are being clinically trialled, actually transplanting cells grown in an external structure into a patient is a more advanced process. It is still not possible at present to guarantee a consistent quality, which is required by medical device regulations.

But research is being carried out to grow external cells into tissue, such as a patch of skin, and transplant that into a patient. Professor Derby is currently working with Ear, Nose and Throat surgeons at the Manchester Royal Infirmary. He wants to use bioprinting to print cells without using a scaffold. The printed cells form a sheet that can be used for grafts inside the body, for example in the mouth or nose.

Professor Derby says: "It is very difficult to transplant even a small patch of tissue to repair the inside of the nose or mouth. Current practice, to transplant the patient's skin to these areas, is regarded as unsatisfactory because the transplants do not possess mucous generating cells or salivary glands. We are working on techniques to print sheets of cells that are suitable for implantation in the mouth and nose."

One area which Professor Derby's review article highlights for the future is the ability to grow structures which can model cancerous tumours. These could then be used to test new drugs, which it's hoped will advance the search for more effective treatments.

Writing the review article has encouraged Professor Derby that there is a strong future for bioprinting and whilst growing organs is still a long way off, the advances being made in this area are very promising.


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
44-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Organovo Announces Close of $15.2 Million Private Placement to Advance 3D Bioprinting for Medical Applications
2. Promising Data Presented on GenVec Malaria Program
3. University of Miami study finds RBAC to possess promising immunomodulating effects with respect to natural killer cell and cytokine activity
4. Founder of National Childrens Leukemia Unveiled Non-Embryonic Stem Cell Treatment Promising Cure for Cancer at GIL 2012: Europe
5. New 3-D transistors promising future chips, lighter laptops
6. S*BIOs Novel JAK2 Inhibitor Pacritinib (SB1518) and Histone Deacetylase Inhibitor Pracinostat (SB939) Demonstrate Promising Activity in Phase 2 Studies for Patients with Myelofibrosis (MF)
7. SAHYOG: Future of Bio-based Economy in India and European Union
8. New study reveals challenge facing designers of future computer chips
9. New discovery shows promise in future speed of synthesizing high-demand nanomaterials
10. ViThera Novel Approach Using Probiotics to Deliver Elafin Shows Promise as a Future Inflammatory Bowel Disease (IBD) Treatment
11. Epigenetics Holds Key to Healthier Future
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in ... peritoneal or pleural mesothelioma. Their findings are the subject of a new article on ... biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients that ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... MONICA, Calif. , June 23, 2016  The Prostate Cancer Foundation ... pioneer increasingly precise treatments and faster cures for prostate cancer. Members of the ... institutions across 15 countries. Read More About the Class ... ... ...
Breaking Biology Technology:
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
(Date:6/1/2016)... 2016 Favorable Government Initiatives Coupled ... Criminal Identification to Boost Global Biometrics System Market Through ... Research report, " Global Biometrics Market By Type, ... Opportunities, 2011 - 2021", the global biometrics market is ... account of growing security concerns across various end use ...
Breaking Biology News(10 mins):