Navigation Links
Biology, materials science get a boost from robust imaging tool
Date:8/8/2011

EUGENE, Ore. -- (Aug. 8, 2011) -- Shape and alignment are everything. How nanometer-sized pieces fit together into a whole structure determines how well a living cell or an artificially fabricated device performs. A new method to help understand and predict such structure has arrived with the successful use a new imaging tool.

Coupling laser-driven, two-dimensional fluorescence imaging and high-performance computer modeling, a six-member team -- led by University of Oregon chemist Andrew H. Marcus and Harvard University chemist Alan Aspuru-Guzik -- solved the conformation of self-assembled porphyrin molecules in a biological membrane.

Porphyrins are organic compounds that are ubiquitous in living things. They carry mobile electrical charges that can hop from molecule-to-molecule and allow for nanoscale communications and energy transfer. They are also building blocks in nanodevices.

The new technique -- phase-modulation 2D fluorescence spectroscopy -- is detailed in a paper scheduled to appear online this week ahead of regular publication in the Proceedings of the National Academy of Sciences. The breakthrough skirts the often-needed step of obtaining crystals of molecules that are being studied, said Marcus, a member of the Oregon Center for Optics, Materials Science Institute and Institute of Molecular Biology. Most functional biological molecules don't easily form crystals.

"Our technique is a workable way to determine how macromolecular objects assemble and form the structures they will in biological environments," Marcus said. "It's robust and will provide a means to study biological protein-nucleic acid interactions."

Work already is underway to modify the experimental instrumentation in the UO's stable and temperature-controlled High Stability Optics Lab to apply the research on DNA replication machinery -- one category of the best-known macromolecular complexes, which consist of nucleic acids and proteins that must be properly aligned to function correctly. "It's a strategy that will allow us to do two things: Look at these complexes one molecule at a time, and perform experiments at short ultraviolet wavelengths to look at DNA problems," he said.

In addition, the approach should be useful to materials scientists striving to understand and harness the necessary conformation of polymers used in the production of nanoscale devices. "In biology, large molecules assemble to form very complex structures that all work together like a machine," Marcus said. "The way these nanoscale structures form and become functional is an actively pursued question."

The technique builds on earlier versions of two-dimensional (2D) optical spectroscopy that emerged in efforts to get around limitations involved in applying X-ray crystallography and nuclear magnetic resonance to such research. The previous 2D approaches depended on the detection of transmitted signals but lacked the desired sensitivity.

The new approach can be combined with single-molecule fluorescence microscopy to allow for research at the tiniest of scales to date, Marcus said. "With fluorescence, you can see and measure what happens one molecule at time. We expect this approach will allow us to look at individual molecular assemblies."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology technology :

1. Connecting Materials Science With Biology, K-State Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick
2. Berkeley scientists pioneer nanoscale nuclear materials testing capability
3. Kuros Announces Allowance of European Patent for Synthetic Biomaterials
4. Reportlinker Adds Orthopedic Biomaterials, The World Market
5. Student innovation at Rensselaer holds key to safer remote detection of dangerous materials
6. Keynote Announced for Virtual Event: Developments in Materials for Medical Applications
7. Grove School professor leads new metamaterials center
8. New materials based on carbon nanoparticles
9. MEMS Materials and Processes Handbook -- a comprehensive, practical resource
10. Search for advanced materials aided by discovery of hidden symmetries in nature
11. MIT engineers devise new way to inspect materials used in airplanes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Biology, materials science get a boost from robust imaging tool
(Date:12/6/2016)... According to a new market research report "Microfluidics Market by ... Proteomics, Capillary Electrophoresis, POC, Clinical, Environmental, Drug Delivery) - Global Forecast ... reach USD 8.78 Billion by 2021 from USD 3.65 Billion in ... to 2021). Continue Reading ... ...
(Date:12/6/2016)... 2016 Zimmer Biomet Holdings, Inc. (NYSE ... pricing terms of its previously-announced cash tender offers ... price (excluding accrued and unpaid interest to, but ... fees and expenses related to the Offers) (the ... in the table below (collectively, the "Notes"). The ...
(Date:12/6/2016)...  The Texas Medical Center (TMC) and ... today announced the establishment of a new international BioBridge, ... Australia and the Texas Medical Center, the ... HISA and the Texas Medical Center, with the support ... global health innovation ecosystem where emerging technologies can be ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... building management solutions headquartered in Aurora, Ohio, announced the opening of their new ... Carolina, the newly constructed facility is home to 200 employees focused on providing ...
Breaking Biology Technology:
(Date:12/7/2016)... BOSTON , Dec. 7, 2016   ... today announced the appointment of new CEO ... industry executive with decades of experience, has served ... and Cisco, where he specialized in expanding a ... emerging technology portfolios. He most recently served as ...
(Date:12/2/2016)... India , December 1, 2016 ... Authentication type (Fingerprint, Voice), Future Technology (Iris Recognition ... and Region - Global Forecast to 2021", published ... USD 442.7 Million in 2016, and is projected ... at a CAGR of 14.06%.      ...
(Date:11/29/2016)... , Nov. 29, 2016   ... identification and object recognition technologies, today released ... for fingerprint recognition solutions that run on ... fingerprint template using less than 128KB of ... compact devices that have limited on-board resources, ...
Breaking Biology News(10 mins):