Navigation Links
Bioengineers develop bacterial strain to increase ethanol biofuel production
Date:12/10/2010

Georgia, US - A team of Bioengineers in the United States have modified a strain of bacteria to increase its ability to produce ethanol. The research, published in Biotechnology and Bioengineering, reveals how adaptation and metabolic engineering can be combined for strain improvement, a positive development for the biofuel industry.

The team focused their research on Zymomonas mobilis, a bacterium noted for its bio-ethanol producing potential. However, the team believed that ethanol production could be increased through improvement of xylose fermentation.

"Zymomonas mobilis is a superb ethanol producer with productivity exceeding yeast strains by several fold," said lead author Rachel Chen from the Georgia Institute of Technology. "In this study we sought to improve ethanol production by enhancing the ability of Z. mobilis to use and ferment xylose. Fermenting xylose at high concentration could in turn increase ethanol concentration, resulting in much improved productivity."

The team found that by metabolically altering the strain, sugar fermentation time was reduced from over 110 hours to about 35 hours. This improvement in fermentation allowed the strain to ferment higher concentrations of xylose.

"This demonstrated increase in fermentation and xylose utilization enabled us to produce ethanol to a concentration of 9% (w/v), the highest ever shown for this organism in mixed sugar fermentation," said Chen.

This research also investigated the underlying mechanism for the improvement. Interestingly, by adapting a strain in a high concentration of xylose, significant alterations of metabolism occurred.

One noticeable change was reduced levels of xylitol, a byproduct of xylose fermentation which can inhibit the strain's xylose metabolism. In addition, the first step of xylose metabolism, believed to be the rate-limiting step, was accelerated 4-8 times in the adapted strain, with the net effect of channeling xylose to ethanol instead of xylitol.

"This research illustrates the power of adaptation in strain improvement," concluded Chen. "This confirms that xylitol metabolism is the key to efficient use of xylose in this bacterium, which in turn can be vital for producing ethanol. This shows that adaptation is not only useful in improving strains, but is equally useful for pinpointing key bottlenecks in metabolically engineered strains."


'/>"/>

Contact: Ben Norman
Lifesciencenews@wiley.com
44-012-437-70375
Wiley-Blackwell
Source:Eurekalert

Related biology technology :

1. QuantaLife, Inc. Closes $17.2M Series B Financing to Accelerate Application Development for Its Droplet Digital™ PCR Platform and Establish Commercial Operations by 2011
2. Shrink Nanotechnologies Shrink Chips Cell Culturing Unit Enters Into Exclusive Development and Manufacturing Agreement with EV Group to Commercialize the StemDisc Platform
3. Shrink Nanotechnologies Enters Into Exclusive Development and Manufacturing Agreement With EV Group to Commercialize Stem Disc Platform
4. Chimerix Presents Update on CMX001 Development to the World Health Organization Advisory Committee on Variola Virus Research
5. Pitt-led team develops nanoscale light sensor compatible with Etch-a-Sketch nanoelectronic platform
6. Argos Therapeutics to Present Corporate Overview and Next Steps in Clinical Development of Arcelis™ Immunotherapy at Lazard Capital Markets 7th Annual Healthcare Conference
7. Cardium Reports on Third Quarter 2010 Financial Results and Recent Developments
8. Advanced Life Sciences Submits Full Proposal to NIAID for Development of Intravenous Formulation of Restanza as a Biodefense Countermeasure
9. Transgenomic Develops New Assays to Detect EGFR Mutations Using COLD-PCR
10. U.S. Government Grants Awarded for Further Development of Adult Stem Cell Products
11. Building Biotech Technology Transfer Opportunities: Sponsor and Developer Strategies for Success
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the “hairy ... a depiction of a system of linkages and connections so complex and dense ... of computer science at Worcester Polytechnic Institute (WPI) and director of the university’s ...
(Date:10/12/2017)... ca (PRWEB) , ... October 12, 2017 , ... ... the Surgical Wound Market with the addition of its newest module, US Hemostats ... $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic ...
(Date:10/11/2017)... ... 11, 2017 , ... The CRISPR-Cas9 system has ... and avoiding the use of exogenous expression plasmids. The simplicity of programming this ... gain-of-function studies. , This complement to loss-of-function studies, such as with RNAi ...
(Date:10/11/2017)...  VMS BioMarketing, a leading provider of patient support solutions, ... Educator (CNE) network, which will launch this week. The VMS ... care professionals to enhance the patient care experience by delivering ... health care professionals to help women who have been diagnosed ... ...
Breaking Biology Technology:
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
Breaking Biology News(10 mins):