Navigation Links
Bio-inspired polymer synthesis enhances structure control
Date:5/3/2012

Sydney, Australia - A new bio-inspired approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

In a study published last week in the prestigious journal Nature Chemistry, researchers from the University of New South Wales in Sydney and the University of Warwick in the UK have outline a new method of polymer synthesis based on a combination of segregation and templating a pair of natural approaches that have evolved over billions of years to direct complex biological processes.

Segregation improves biochemical control in organisms' cells by organising reactants into defined, well-regulated environments, while the transfer of genetic information is a primary function of templating, states the paper.

"The ability to synthesise polymers with such precision and control will enable us to tailor-make polymers for specific needs, with major applications in materials chemistry, nanotechnology and nanomedicine," says co-author Associate Professor Per Zetterlund, Deputy Director of the Centre for Advanced Macromolecular Design (CAMD) in the School of Chemical Engineering at UNSW.

Polymers are large molecules comprising thousands of small molecules or monomers bonded together to form a chain-like structure. Polymers can have different properties and functionality depending on their constituent parts, and a range of high-tech applications.

One way of growing these chains is through a process known as radical polymerisation, which uses free radicals. These are molecules or atoms with unpaired electrons and are consequently very reactive. Free radicals initiate chain growth by adding to a monomer unit, explains Zetterlund. This generates a new radical that adds to the monomer unit again, and so on, in a continuing process.

However, conventional radical polymerisation yields polymers of ill-defined structure, says Zetterlund: they have a wide-range of molecular weights, the monomer sequence distribution along the chain is difficult to control and the length of the chain cannot be predetermined.

"One of the long-standing goals in synthetic polymer chemistry is to be able to synthesise polymers of well-defined microstructure," says Zetterlund. "Our approach offers much better control over molecular weight distributions, gives access to higher molecular weights, and offers potential to control tacticity and monomer sequence distribution."

This allows researchers to better control the physical and mechanical properties of the polymer, which determines its functionality, and could enable sequence-controlled polymerisation and thus controlled polymer folding, two pinnacles of polymer science, says Zetterlund.

"The overall structure in biopolymers is dictated by how the polymer chains fold or arrange themselves in space as exemplified by the DNA double helix," explains Zetterlund. "To be able to mimic such behaviour, it is necessary to be able to prepare polymers with very specific distributions of monomers along the chain."


'/>"/>

Contact: Myles Gough
myles.gough@unsw.edu.au
61-029-385-1933
University of New South Wales
Source:Eurekalert

Related biology technology :

1. Fabrication method can affect the use of block copolymer thin films
2. UMass Amherst polymer scientists, physicists develop new way to shape thin gel sheets
3. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
4. Powered by seaweed: Polymer from algae may improve battery performance
5. First polymer solar-thermal device heats home, saves money
6. Carnegie Mellon researchers electrify polymerization
7. New measurement into biological polymer networks
8. New England Biolabs Introduces OneTaq™ DNA Polymerase, a Robust Solution for Routine and Difficult PCR
9. Zeus Expands Class 7 Capabilities to Include the Processing of Advanced Polymers
10. Building a smaller, lighter future: Understanding polymer behaviors below 1 nanometer
11. Cardium Gains Exclusive Access to Novel Polymer-Based Nitric Oxide Technology for Expansion of Wound Healing Product Portfolio
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... 11, 2017 , ... At its national board meeting in ... Sheikh, the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space Technology ... in ARCS Alumni Hall of Fame . ASTER Labs is a technology ...
(Date:10/11/2017)... ... 2017 , ... Personal eye wash is a basic first aid supply for any work environment, ... eye do you rinse first if a dangerous substance enters both eyes? It’s one less ... with its unique dual eye piece. , “Whether its dirt and debris, or an acid ...
(Date:10/11/2017)... BALTIMORE, Md. (PRWEB) , ... October 11, 2017 ... ... for digital pathology, announced today it will be hosting a Webinar titled, “Pathology ... of  Advanced Pathology Associates , on digital pathology adoption best practices and how ...
(Date:10/11/2017)... Netherlands and LAGUNA HILLS, Calif. ... Institute of Cancer Research, London (ICR) ... MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with ... known as MUK nine . The University of ... which is partly funded by Myeloma UK, and ICR will ...
Breaking Biology Technology:
(Date:8/23/2017)...  The general public,s help is being enlisted in what,s thought to ... and on the human body –and are believed to affect health.  ... The Microbiome Immunity Project is the largest ... the gut. The project's goal is to help advance scientific knowledge of ... ...
(Date:7/20/2017)... DAL ) customers now can use fingerprints instead of their boarding ... ... biometrics to board aircraft at Reagan Washington National Airport ... Delta,s biometric boarding pass experience that launched in May at the ... to allow eligible Delta SkyMiles Members who are enrolled in CLEAR to ...
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
Breaking Biology News(10 mins):