Navigation Links
Bio-enabled, surface-mediated approach produces nanoparticle composites

Using thin films of silk as templates, researchers have incorporated inorganic nanoparticles that join with the silk to form strong and flexible composite structures that have unusual optical and mechanical properties. This bio-enabled, surface-mediated formation approach mimics the growth and assembly processes of natural materials, taking advantage of the ability of biomolecules to chemically reduce metal ions to produce nanoparticles without harsh processing conditions.

Less than 100 nanometers thick, silk-silver nanoparticle composite films formed in this process can be used for flexible mirrors and films that reflect light in specific wavelengths. The technique could also be used to create anti-microbial films, thin film sensors, self-cleaning coatings, catalytic materials and potentially even flexible photovoltaic cells.

"We are taking advantage of biological molecules that have the ability to bind metallic ions of silver or gold from solution," said Vladimir Tsukruk, a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "These molecules can create mono-dispersed metallic nanoparticles of consistent sizes under ambient conditions at room temperature and in a water-based environment without high vacuum or high temperatures.

Sponsored by the Air Force Office for Scientific Research and the Air Force Research Laboratory, the research is scheduled to be described August 19th at the Fall 2009 National Meeting of the American Chemical Society in Washington, D.C.

The nanoparticles produced range in size from four to six nanometers in diameter, surrounded by a biological shell of between one and two nanometers. The silk template permits good control of the nanoparticle placement, creating a composite with equally dispersed particles that remain separate. The optical properties of the resulting film depend on the nanoparticle material and size.

"This system provides very precise control over nanoparticle sizes," said Eugenia Kharlampieva, a postdoctoral researcher in Tsukruk's laboratory. "We produce well-defined materials without the problem of precipitation, aggregation or formation of large crystals. Since the silk fibroin is mono-dispersed, we can create uniform domains within the template."

Fabrication of the nanocomposites begins by dissolving silk cocoons and making the resulting fibroin water soluble. The silk is then placed onto a silicon substrate using a spin-coating technique that produces multiple layers of thin film that is then patterned into a template using a nanolithography technique.

"Because silk is a protein, we can control the properties of the surface and design different kinds of surfaces," explained Kharlampieva. "This surface-mediated approach is flexible at producing different shapes. We can apply the method to coat any surface we want, including objects of complex shapes."

Next, the silk template is covered with a solution containing ions of gold, silver, or other metal. Over a period of time ranging from hours to days, the nanoparticles form within the template. The relatively long growth time, which operates at room temperature and neutral pH in a water-based environment, allows precise control of the particle size and spacing, Tsukruk noted.

"We operate at conditions that are suitable for biological activities," he said. "No reducing agents are required to produce the particles because the biomolecules serve as reducing agents. We don't add any chemicals that could be toxic to the protein."

Use of these mild processing conditions reduces the cost producing the composites and their potential environmental impact. When dried, the resulting silk-nanoparticle film has high tensile strength, high elasticity and toughness.

"Silk is almost as strong as Kevlar, but it can be deformed by 30 percent without breaking," said Tsukruk. "The silk film is very robust, with a complicated structure that you don't find in synthetic materials."

For the future, the researchers plan to use the bio-assisted, surface-mediated technique to produce nanoparticles from other metals. They also hope to combine different types of particles to create new optical and mechanical properties.

"If we combine gold-binding and silver-binding peptides, we can make composites that will include a mixture of gold and silver nanoparticles," said Kharlampieva. "Each particle will have its own properties, and combining them will create more interesting composite materials."

The researchers also hope to find additional applications for the films in such areas as photovoltaics, medical technology, and anti-microbial films that utilize the properties of silver nanoparticles.

Beyond Tsukruk and Kharlampieva, the research team has included Dmitry Zimnistky, Maneesh Gupta and Kathryn Bergman of Georgia Tech; David Kaplan of the Department of Biomedical Engineering at Tufts University, and Rajesh Naik of the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"Nanomaterials grown under environmentally friendly conditions can be as good as synthetic materials that are produced under harsh conditions," Tsukruk added. "This technique allows us to grow very useful materials under natural conditions."


Contact: John Toon
Georgia Institute of Technology Research News

Related biology technology :

1. New Pharmacogenomic Approach: 454 Life Sciences and Perlegen to Collaborate in Drug Response Sequencing Study
2. Novel Alternative Approach to Inhibiting Insulin Growth Factor (IGF) May Provide New Treatment for Breast Cancer and Other Cancers
3. Monsanto and Devgen Describe New Approach to Insect-Protection
4. Fate Therapeutics Created by Leading Stem Cell Scientists to Pursue New Approaches to Stem Cell Therapies
5. New approach may render disease-causing staph harmless
6. Copolymers block out new approaches to microelectronics at NIST
7. Silence Therapeutics and AstraZeneca Announce Collaboration to Develop Novel Approaches for siRNA Drug Delivery
8. Quiznos Selects Halogen for Fresh Approach to Talent Management
9. Countering an approaching water crisis
10. Novel Approach to Treat Alzheimers and Other Diseases Offered by Targeting Cell Membrane RAFTS
11. Abbott Scientists Present a New Approach for Treating Attention-Deficit Hyperactivity Disorder
Post Your Comments:
Related Image:
Bio-enabled, surface-mediated approach produces nanoparticle composites
(Date:11/25/2015)... , ... November 25, 2015 , ... ... uBiome, were featured on AngelList early in their initial angel funding process. Now, ... syndicate for individuals looking to make early stage investments in the microbiome space. ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The United ... recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the USGA ... his or her work with turfgrass. , Clarke, of Iselin, N.J., is ...
(Date:11/24/2015)... , Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: ... in New York on Wednesday, December 2 ... Torley , president and CEO, will provide a corporate overview. ... York at 1:00 p.m. ET/10:00 a.m. PT . ... relations, will provide a corporate overview. --> th ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... But unless it is bound to proteins, copper is also toxic to cells. ... at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in ...
Breaking Biology Technology:
(Date:10/27/2015)... , Oct. 27, 2015 In the ... issues of concern for various industry verticals such as ... due to the growing demand for secure & simplified ... various ,sectors, such as hacking of bank accounts, misuse ... electronic equipment such as PC,s, laptops, and smartphones are ...
(Date:10/27/2015)... Synaptics Inc. (NASDAQ: SYNA ), the leader ... adopted the Synaptics ® ClearPad ® Series ... newest flagship smartphones, the Nexus 5X by LG and ... --> --> Synaptics works closely with ... in the joint development of next generation technologies. Together, ...
(Date:10/26/2015)... LAS VEGAS , Oct. 26, 2015 ... an innovator in modern authentication and a founding member ... launch of its latest version of the Nok Nok™ ... to use standards-based authentication that supports existing and emerging ... Suite is ideal for organizations deploying customer-facing applications that ...
Breaking Biology News(10 mins):