Navigation Links
Berkeley Lab scientists create 'molecular paper'
Date:4/14/2010

Two-dimensional, "sheet-like" nanostructures are commonly employed in biological systems such as cell membranes, and their unique properties have inspired interest in materials such as graphene. Now, Berkeley Lab scientists have made the largest two-dimensional polymer crystal self-assembled in water to date. This entirely new material mirrors the structural complexity of biological systems with the durable architecture needed for membranes or integration into functional devices.

These self-assembling sheets are made of peptoids, engineered polymers that can flex and fold like proteins while maintaining the robustness of manmade materials. Each sheet is just two molecules thick yet hundreds of square micrometers in areaakin to 'molecular paper' large enough to be visible to the naked eye. What's more, unlike a typical polymer, each building block in a peptoid nanosheet is encoded with structural 'marching orders'suggesting its properties can be precisely tailored to an application. For example, these nanosheets could be used to control the flow of molecules, or serve as a platform for chemical and biological detection.

"Our findings bridge the gap between natural biopolymers and their synthetic counterparts, which is a fundamental problem in nanoscience," said Ronald Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry. "We can now translate fundamental sequence information from proteins to a non-natural polymer, which results in a robust synthetic nanomaterial with an atomically-defined structure."

The building blocks for peptoid polymers are cheap, readily available and generate a high yield of product, providing a huge advantage over other synthesis techniques. Zuckermann, instrumental in developing the Foundry's one-of-a-kind robotic synthesis capabilities, worked with his team of coauthors to form libraries of peptoid materials. After screening many candidates, the team landed upon the unique combination of polymer building blocks that spontaneously formed peptoid nanosheets in water.

Zuckermann and coauthor Christian Kisielowski reached another first by using the TEAM 0.5 microscope at the National Center for Electron Microscopy (NCEM) to observe individual polymer chains within the peptoid material, confirming the precise ordering of these chains into sheets and their unprecedented stability while being bombarded with electrons during imaging.

"The design of nature-inspired, functional polymers that can be assembled into membranes of large lateral dimensions marks a new chapter for materials synthesis with direct impact on Berkeley Lab's strategically relevant initiatives such as the Helios project or Carbon Cycle 2.0," said NCEM's Kisielowski. "The scientific possibilities that come with this achievement challenge our imagination, and will also help move electron microscopy toward direct imaging of soft materials."

"This new material is a remarkable example of molecular biomimicry on many levels, and will no doubt lead to many applications in device fabrication, nanoscale synthesis and imaging," Zuckermann added.


'/>"/>

Contact: Aditi Risbud
asrisbud@lbl.gov
510-486-4861
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology technology :

1. LS9, Inc., U.C Berkeley, and JBEI Make Major Breakthrough in Cellulosic Fuels Production
2. Berkeley researchers take the lead out of piezoelectrics
3. Berkeley researchers find new route to nano self-assembly
4. DOE to Explore Scientific Cloud Computing at Argonne, Lawrence Berkeley National Laboratories
5. Berkeley scientists bring MRI/NMR to microreactors
6. UC Berkeley Expands Molecular Toxicology Curriculum to Include GeneGos Platform
7. Advanced Immune Support Formula Licensed From UC Berkeley Launched
8. Brown University scientists discover new principle in material science
9. NIST scientists address wrinkles in transparent film development
10. Scientists discover worlds smallest superconductor
11. Carnegie Mellon scientists create rainbow of fluorescent probes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Berkeley Lab scientists create 'molecular paper'
(Date:5/23/2016)... ... ... blood donations in South Texas and across the nation is growing. , But according to ... are on the decline. In fact, donations across the country are at their lowest point ... the last four years alone. , There is no substitute for blood. , “We want ...
(Date:5/23/2016)... 23, 2016 Zimmer Biomet Holdings, Inc. (NYSE and ... that its Board of Directors has approved the payment of ... of 2016. The cash dividend of $0.24 ... 2016 to stockholders of record as of the close of ... subject to approval of the Board of Directors and may ...
(Date:5/23/2016)... and LONDON , May 23, 2016 /PRNewswire/ ... See Frontage Boost Efficiency by 40% - Frontage Implement ... - Frontage Enforce Quality, Compliance and Traceability Within the Bioanalytical lab ... labs in the United States and ... to be deployed across its laboratory facilities. In addition to serving ...
(Date:5/23/2016)... ... May 23, 2016 , ... ... focused on molecular nanotechnology, announced the winners for the 2015 Foresight Institute Feynman ... Feynman, are given in two categories, one for experiment and the other for ...
Breaking Biology Technology:
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
Breaking Biology News(10 mins):