Navigation Links
Bacterial DNA sequence used to map an infection outbreak

For the first time, researchers have used DNA sequencing to help bring an infectious disease outbreak in a hospital to a close.

Researchers from the Wellcome Trust Sanger Institute, the University of Cambridge and Cambridge University Hospitals used advanced DNA sequencing technologies to confirm the presence of an ongoing outbreak of methicillin-resistant Staphylococcus aureus (MRSA) in a Special Care Baby Unit in real time. This assisted in stopping the outbreak earlier, saving possible harm to patients. This approach is much more accurate than current methods used to detect hospital outbreaks.

Using this technology, the team revealed that the outbreak had extended into the wider community, a conclusion that could not be reached with available methods. They also used sequencing to link the outbreak to an unsuspecting carrier, who was treated to eradicate MRSA.

"We are always seeking ways to improve our patient care and wanted to explore the role that the latest sequencing technologies could play in the control of infections in hospitals," says Dr Nick Brown, author, consultant microbiologist at the Health Protection Agency and infection control doctor at Addenbrooke's Hospital Cambridge. "Our aim is to prevent outbreaks, and in the event that they occur to identify these rapidly and accurately and bring them under control.

"What we have glimpsed through this pioneering study is a future in which new sequencing methods will help us to identify, manage and stop hospital outbreaks and deliver even better patient care."

Over a six month period, the hospital infection control team used standard protocols to identify 12 patients who were carrying MRSA. However, this standard approach alone could not give enough information to confirm or refute whether or not an ongoing outbreak was actually taking place.

In this study, the researchers analysed MRSA isolates from these 12 patients with DNA sequencing technology and demonstrated clearly that all the MRSA bacteria were closely related and that this was an outbreak. They also revealed that the outbreak was more extensive than previously realised, finding that over twice as many people were carrying or were infected with the same outbreak strain. Many of these additional cases were people who had recent links to the hospital but were otherwise healthy and living in the community when they developed a MRSA infection.

While this sequencing study was underway, the infection control team identified a new case of MRSA carriage in the Special Care Baby Unit, which occurred 64 days after the last MRSA-positive patient had left the same unit. The team used advanced DNA sequencing to show in real time that this strain was also part of the outbreak, despite the lack of apparent links between this case and previous patients. This raised the possibility that an individual was unknowingly carrying and transmitting the outbreak MRSA strain.

The infection control team screened 154 healthcare workers for MRSA and found that one staff member was carrying MRSA. Using DNA sequencing, they confirmed that this MRSA strain was linked to the outbreak. This healthcare worker was quickly treated to eradicate their MRSA carriage and thus remove the risk of further spread.

"Our study highlights the power of advanced DNA sequencing used in real time to directly influence infection control procedures," says Dr Julian Parkhill, lead author from the Wellcome Trust Sanger Institute. "There is a real health and cost burden from hospital outbreaks and significant benefits to be gained from their prevention and swift containment. This technology holds great promise for the quick and accurate identification of bacterial transmissions in our hospitals and could lead to a paradigm shift in how we manage infection control and practice."

In this instance, DNA sequencing was a key step in bringing the outbreak to a close, saving possible harm to patients and potentially saving the hospital money.

"Our study indicates the considerable potential of sequencing for the rapid identification of MRSA outbreaks," says Professor Sharon Peacock, lead author from the University of Cambridge and clinical specialist at the Health Protection Agency. "What we need before this can be introduced into routine care is automated tools that interpret sequence data and provide readily understandable information to healthcare workers. We are currently working on such a system.

"If we have a robust system of this type in operation when the outbreaks occur, we predict that we will be able to stop them after the first few cases, as we will rapidly find clear connections."

In their next step, the team will study all MRSA carriers and infected patients over the next year in Addenbrooke's Hospital and surrounding hospitals and the community to understand transmission events with the aim of improving infection management.

Sir Mark Walport, Director of the Wellcome Trust, says: "This is a dramatic demonstration that medical genomics is no longer a technology of the future - it is a technology of the here and now. By collaborating with NHS doctors, geneticists have shown that sequencing can have extremely important applications in healthcare today, halting an outbreak of a potentially deadly disease."


Contact: Aileen Sheehy
Wellcome Trust Sanger Institute

Related biology technology :

1. Sheffield scientists shine a light on the detection of bacterial infection
2. Bacterial protein mops up viruses found in contaminated water supplies
3. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
4. Targeted antibacterial agent rapidly created in response to serious food safety pathogen
5. Scientists target bacterial transfer of resistance genes
6. Ion Proton™ Sequencer - Inventor, Dr. M. Jonathan Rothberg and Life Technologies CEO, Greg Lucier, Available for Interviews at CES Today
7. deCODE Genetics, in Collaboration with Academic Colleagues, Discovers Three Variants in the Sequence of the Human Genome that Affect the Risk of Thyroid Cancer
8. Nabsys to Present DNA Sequence Data from Solid-State Nanodetectors at the Annual Advances in Genome Biology and Technology (AGBT) Meeting and the EMBL Omics and Personalized Health Conference
9. Discovered Evolution of Genomic Sequences -- from Ocean Archaea to Brain Cancer -- Leads to New Synthetic Replikin Vaccines for Infectious Diseases and Cancer
10. QIAGEN and Max Planck Institute for Infection Biology Collaborate to Develop Assay for Active TB Risk in Individuals With Latent Infection
11. New laboratory method uses mass spectrometry to rapidly detect staph infections
Post Your Comments:
(Date:6/23/2016)... 2016  The Prostate Cancer Foundation (PCF) is pleased to announce ... cures for prostate cancer. Members of the Class of 2016 were selected from ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... ... STACS DNA Inc., the sample tracking software company, today announced that Dr. Hays ... DNA as a Field Application Specialist. , “I am thrilled that Dr. Young ... DNA. “In further expanding our capacity as a scientific integrator, Hays brings a wealth ...
(Date:6/23/2016)... 23, 2016 Andrew ... Published recently in ... journal from touchONCOLOGY, Andrew D Zelenetz , ... cancer care is placing an increasing burden on ... biologic therapies. With the patents on many biologics ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division ... tuned and optimized exclusively for Okuma CNC machining centers at The International Manufacturing ... collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics and ...
Breaking Biology Technology:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: ... to provide their customers enhanced security to access ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
Breaking Biology News(10 mins):