Navigation Links
At small scales, tug-of-war between electrons can lead to magnetism

BUFFALO, N.Y. -- At the smallest scales, magnetism may not work quite the way scientists expected, according to a recent paper in Physical Review Letters by Rafał Oszwałdowski and Igor utić of the University at Buffalo and Andre Petukhov of the South Dakota School of Mines and Technology.

The three physicists have proposed that it would be possible to create a quantum dot -- a kind of nanoparticle -- that is magnetic under surprising circumstances.

Magnetism is determined by a property all electrons possess: spin. Individual spins are akin to tiny bar magnets, which have north and south poles. Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons have the same spin.

Mobile electrons can act as "magnetic messengers," using their own spin to align the spins of nearby atoms. If two mobile electrons with opposite spins are in an area, conventional wisdom says that their influences should cancel out, leaving a material without magnetic properties.

But the UB-South Dakota team has proposed that at very small scales, magnetism may be more nuanced than that. It is possible, the physicists say, to observe a peculiar form of magnetism in quantum dots whose mobile electrons have opposing spins.

In their Physical Review Letters article (, the researchers describe a theoretical scenario involving a quantum dot that contains two free-floating, mobile electrons with opposite spins, along with manganese atoms fixed at precise locations within the quantum dot.

The quantum dot's mobile electrons act as "magnetic messengers," using their own spins to align the spins of nearby manganese atoms.

Under these circumstances, conventional thinking would predict a stalemate: Each mobile electron exerts an equal influence over spins of manganese atoms, so neither is able to "win."

Through complex calculations, however, Oszwałdowski, utić and Petukhov show that the quantum dot's two mobile electrons will actually influence the manganese spins differently.

That's because while one mobile electron prefers to stay in the middle of the quantum dot, the other prefers to locate further toward the edges. As a result, manganese atoms in different parts of the quantum dot receive different messages about which way to align their spins.

In the "tug-of-war" that ensues, the mobile electron that interacts more intensely with the manganese atoms "wins," aligning more spins and causing the quantum dot, as a whole, to be magnetic. (For a visual representation of this tug-of-war, see Figure 1.)

This prediction, if proven, could "completely alter the basic notions that we have about magnetic interactions," utić says.

"When you have two mobile electrons with opposite spins, the assumption is that there is a nice balance of up and down spins, and therefore, there is no magnetic message, or nothing that could be sent to align nearby manganese spins," he says. "But what we are saying is that it is actually a tug of war. The building blocks of magnetism are still mysterious and hold many surprises."

Scientists including UB Professor Athos Petrou, UB College of Arts and Sciences Dean Bruce McCombe and UB Vice President for Research Alexander Cartwright have demonstrated experimentally that in a quantum dot with just one mobile electron, the mobile electron will act as a magnetic messenger, robustly aligning the spins of adjacent manganese atoms (

Now, Petrou and his collaborators are interested in taking their research a step further and testing the tug-of-war prediction for two-electron quantum dots, utić says.

utić adds that learning more about magnetism is important as society continues to find novel uses for magnets, which could advance technologies including lasers, medical imaging devices and, importantly, computers.

He explains the promise of magnet- or spin-based computing technology -- called "spintronics" -- by contrasting it with conventional electronics. Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

Studying how magnetism works on a small scale is particularly important, utić says, because "we would like to pack more information into less space."

And, of course, unraveling the mysteries of magnetism is satisfying for other, simpler reasons.

"Magnets have been fascinating people for thousands of years," utić says. "Some of this fascination was not always related to how you can make a better compass or a better computer hard drive. It was just peculiar that you have materials that attract one another, and you wanted to know why."


Contact: Charlotte Hsu
University at Buffalo

Related biology technology :

1. Chimerix and BARDA Reach Agreement Ending GAO Review of Smallpox Antiviral Contract
2. Reportlinker Adds Innovations in Protein Kinase Therapies - Significant Proportion of Protein Kinase Pipeline Contains Small Molecule Drugs That Target Oncology
3. Larta Institute Receives Award for National Institutes of Health Commercialization Assistance Program at 2011 Acquisition, Grants, and Small Business Symposium
4. Pitt-led researchers create super-small transistor, artificial atom powered by single electrons
5. Precision Therapeutics ChemoFx® Demonstrates Significant Role in Selection of Chemotherapy Doublets in Non Small Cell Lung Cancer
6. The worlds smallest wedding rings
7. MabVax Therapeutics Receives $1.8 Million in a Phase 2 Small Business Innovation Research Program Award From the National Cancer Institute
8. Top-Line Results Announced of Pivotal Phase 3 Motesanib Trial in Advanced Non-Squamous Non-Small Cell Lung Cancer Patients
9. 3-D printing method advances electrically small antenna design
10. Quantum hot potato: NIST researchers entice 2 atoms to swap smallest energy units
11. Smallest magnetic field sensor in the world
Post Your Comments:
Related Image:
At small scales, tug-of-war between electrons can lead to magnetism
(Date:11/24/2015)... , Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced ... 29, 2015 at 11:00 a.m. Israel time, at ... 98 Yigal Allon Street, 36 th Floor, Tel Aviv, ... Eric Paneth and Izhak Tamir to the Board of ... as external directors; , approval of an amendment to certain terms ...
(Date:11/24/2015)... Nov. 24, 2015  Twist Bioscience, a company ... Leproust, Ph.D., Twist Bioscience chief executive officer, will ... on December 1, 2015 at 3:10 p.m. Eastern ... City. --> --> ... Twist Bioscience is on Twitter. Sign up to ...
(Date:11/24/2015)... , ... November 24, 2015 , ... InSphero AG, the ... cell culture models, has promoted Melanie Aregger to serve as Chief Operating Officer. ... served on the management team and was promoted to Head of InSphero ...
(Date:11/24/2015)... QC , Nov. 24, 2015 /CNW Telbec/ - ProMetic ... "Corporation") announced today that Mr. Pierre Laurin , President ... corporate presentation at the upcoming Piper Jaffray 27 th ... Palace Hotel, on December 1-2, 2015. st ... available for one-on-one meetings throughout the day. The presentation will ...
Breaking Biology Technology:
(Date:11/11/2015)...   MedNet Solutions , an innovative SaaS-based eClinical technology ... pleased to announce that it will be a Sponsor of ... to be held November 17-19 in Hamburg ... of iMedNet , MedNet,s easy-to-use, proven and ... has been able to deliver time and cost savings of ...
(Date:11/10/2015)... YORK , Nov. 10, 2015 ... to behavioral biometrics that helps to identify and ... fraud. Signature is considered as the secure and ... the identification of a particular individual because each ... more accurate results especially when dynamic signature of ...
(Date:11/9/2015)... 9, 2015  Synaptics Inc. (NASDAQ: SYNA ), ... broader entry into the automotive market with a comprehensive ... pace of consumer electronics human interface innovation. Synaptics, industry-leading ... for the automotive industry and will be implemented in ... Europe , Japan , and ...
Breaking Biology News(10 mins):