Navigation Links
Amniotic Fluid May Provide New Source of Stem Cells for Future Therapies
Date:3/31/2009

WASHINGTON, March 31 /PRNewswire-USNewswire/ -- For the first time, scientists have shown that amniotic fluid (the protective liquid surrounding an embryo) may be a potential new source of stem cells for therapeutic applications. The study was prepublished online on February 12, 2009, in Blood, the official journal of the American Society of Hematology.

"Building on observations made by other scientists, our research team wondered whether stem cells could be detected in amniotic fluid. We looked at the capacity of these cells to form new blood cells both inside and outside the body, and also compared their characteristics to other well-known sources of stem cells," said senior study author Marina Cavazzana-Calvo, MD, Ph.D., of INSERM, the national French institute for health and biomedical research. Isabelle Andre-Schmutz, Ph.D., of INSERM, also a senior author of the study, added, "The answer was a resounding 'yes' - the cells we isolated from the amniotic fluid are a new source of stem cells that may potentially be used to treat a variety of human diseases."

To conduct the study, amniotic fluid was collected from pregnant mice between 9.5 and 19.5 days post-coitus. Human amniotic fluid was collected during routine diagnostic procedures (amniocentesis) from volunteer donors between seven and 35 weeks of pregnancy.

Amniotic fluid (AF) cells that had markers similar to bone marrow stem cells (termed AFKL cells) were then isolated for use in experiments, as these cell markers were indicative of progenitor cells (cells that have the capacity to differentiate into other types of cells).

In vitro, AFKL cells from both mice and humans were able to generate all blood cell lineages, including red (erythroid) blood cells and white (myeloid and lymphoid) blood cells in experiments performed outside the animals. But the scientists also wanted to explore the AFKL cells' hematopoietic (blood-forming) potential in vivo. Therefore, adult mice were irradiated to destroy their capacity to produce blood cells and injected with either AFKL cells or fetal liver cells. Fetal liver was used for comparison as it is the primary source for hematopoietic cells in developing embryos.

The peripheral blood of the transplanted mice was examined every four weeks, and after 16-18 weeks the blood-forming organs (bone marrow, spleen, thymus, and lymph nodes) of the mice were dissected. Transplants using mouse AFKL cells were found to be successful; newly formed white blood cells of all lineages derived from AFKL cells appeared in most of the irradiated mice four weeks after the procedure. As expected, all of these blood cell types were detected in all of the control group mice who received fetal liver cell transplants. Scientists continued to find AFKL-derived cells in the irradiated mice four months later, demonstrating the long-term ability of the transplanted cells to produce new blood cells.

Bone marrow samples from the transplanted mice were also taken and injected in a second set of mice and the peripheral blood of this new group of irradiated mice was analyzed and their hematopoietic organs examined after 10-13 weeks. The secondary transplants with mouse AFKL cells were partially successful with some of the mice engrafting the donor cells. This finding shows that AFKL cells have the ability to self-renew, a key characteristic of stem cells.

Though the human AFKL cells failed to reconstitute the hematopoietic system in irradiated, immunodeficient mice, experiments are currently underway to overcome obstacles that may have led to this failure, such as using a low number of cells for the injection and conducting the transplant in adult mice (engraftment is easier to obtain in newborn mice).

As additional confirmation of the probability that AFKL cells are indeed stem cells, the researchers examined them for the expression of specific genes known to be involved in hematopoietic development. The overall gene expression profile of the AFKL cells was found to resemble blood cell progenitors from known hematopoiesis sites such as the aorta-gonad-mesonephros region, placenta, and the umbilical/vitelline arteries.

The American Society of Hematology (www.hematology.org) is the world's largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems, by promoting research, clinical care, education, training, and advocacy in hematology. In September, ASH launched Blood: The Vital Connection (www.bloodthevitalconnection.org), a credible online resource addressing bleeding and clotting disorders, anemia, and cancer. It provides hematologist-approved information about these common blood conditions including risk factors, preventive measures, and treatment options.


'/>"/>
SOURCE American Society of Hematology
Copyright©2009 PR Newswire.
All rights reserved

Related biology technology :

1. GEN Reports on Growing Reliance on Microfluidics Technology
2. GEMS Introduces Ultrasonic Continuous Liquid Level Sensor for Challenging Fluid Measurement
3. RainDance Technologies to Present Sequence Enrichment Using Droplet-Based Microfluidics Workshop at ASHG 2008
4. Microfluidic Systems Receives Continued Funding From the Department of Homeland Security (DHS) Toward the Commercial Production of Autonomous Airborne Pathogen Detection Systems
5. Molecular changes in brain fluid give insight into brain-damaging disease
6. febit Receives U.S. Patent for Microfluidic Extraction Method
7. Microchip Biotechnologies, Inc. Enters Into License Arrangement With GE Healthcare for Fundamental Microfluidic Patents
8. Microfluidic Systems to Show Automated Biological Agent Detection Technology to U.S. House of Representatives
9. DiObex and Camurus Sign License Agreement for the Development of DIO-901 in FluidCrystal(R) Extended Release Technology
10. Microchip Biotechnologies, Inc. Collaborating With Stanford University on Developing a Front End Microfluidic-Based Sample Preparation System for Pyrosequencing Platforms
11. Microfluidic Systems Announces Agreements With Applied Biosystems and United Technologies Hamilton Sundstrand Division for Production of Bioagent Autonomous Networked Detector System
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/22/2017)... ... May 22, 2017 , ... Cancer diagnostics and pathology ... B2 at the Association for Pathology Informatics Annual Summit at the ... demonstrating its Cancer Diagnostic Cockpit and Consultation Portal, Inspirata will present research it ...
(Date:5/19/2017)... (PRWEB) , ... May 19, 2017 , ... In response ... treating gait disorders, Biodex Medical Systems, Inc. announces the release of their Gait Trainer ... has been joined with a biomedical system to aid in rehabilitating individuals with cerebral ...
(Date:5/18/2017)... California (PRWEB) , ... May 18, 2017 , ... ... team-building activities. The Tapas Cooking Challenge is a two-hour team-building package designed ... delicious menu created by Chef Jodi Abel, which include items, such as Blackened ...
(Date:5/18/2017)... ... May 17, 2017 , ... ... further enhances its scientific power by providing investigators access to a high-profile ... to join the scientific advisory board. “We are committed to offering superior ...
Breaking Biology Technology:
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed Anwar ... prestigious international IAIR Award for the most innovative high security ePassport and ... ... Maldives Immigration Controller General, Mr. Mohamed ... the right) have received the IAIR award for the "Most innovative high ...
(Date:3/22/2017)... Optimove , provider of the ... as 1-800-Flowers and AdoreMe, today announced two new ... Using Optimove,s machine learning algorithms, these features allow ... recommendations to their customers based not just on ... intent drawn from a complex web of data ...
Breaking Biology News(10 mins):