Navigation Links
Amaizing: Corn genome decoded
Date:11/20/2009

AUDIO: A team of scientists from Washington University in St. Louis, the University of Arizona, Cold Spring Harbor Laboratory and Iowa State University has finished sequencing the DNA of corn. The...

Click here for more information.

In recent years, scientists have decoded the DNA of humans and a menagerie of creatures but none with genes as complex as a stalk of corn, the latest genome to be unraveled.

A team of scientists led by The Genome Center at Washington University School of Medicine in St. Louis published the completed corn genome in the Nov. 20 journal Science, an accomplishment that will speed efforts to develop better crop varieties to meet the world's growing demands for food, livestock feed and fuel.

"Seed companies and maize geneticists will pounce on this data to find their favorite genes," says senior author Richard K. Wilson, Ph.D., director of Washington University's Genome Center, who led the multi-institutional sequencing effort. "Now they'll know exactly where those genes are. Having the complete genome in hand will make it easier to breed new varieties of corn that produce higher yields or are more tolerant to extreme heat, drought, or other conditions."

Corn, also known as maize, is the top U.S. crop and the basis of products ranging from breakfast cereal to toothpaste, shoe polish and ethanol. The corn genome is a hodgepodge of some 32,000 genes crammed into just 10 chromosomes. In comparison, humans have 20,000 genes dispersed among 23 chromosomes.

The $29.5 million maize sequencing project began in 2005 and is funded by the National Science Foundation and the U.S. departments of agriculture and energy. The genome was sequenced at Washington University's Genome Center. The overall effort involved more than 150 U.S. scientists with those at the University of Arizona in Tucson, Cold Spring Harbor Laboratory in New York and Iowa State University in Ames playing key roles.

The group sequenced a variety of corn known as B73, developed at Iowa State decades ago. It is known for its high grain yields and has been used extensively in both commercial corn breeding and in research laboratories.

The genetic code of corn consists of 2 billion bases of DNA, the chemical units that are represented by the letters T, C, G and A, making it similar in size to the human genome, which is 2.9 billion letters long.

But that's where much of the similarity ends. The challenge for Wilson and his colleagues was to string together the order of the letters, an immense and daunting task both because of the corn genome's size and its complex genetic arrangements. About 85 percent of the DNA segments are repeated. Jumping genes, or transposons, that move from place to place make up a significant portion of the genome, further complicating sequencing efforts.

A working draft of the maize genome, unveiled by the same group of scientists in 2008, indicated the plant had 50,000-plus genes. But when they placed the many thousands of DNA segments onto chromosomes in the correct order and closed the remaining gaps, the researchers revised the number of genes to 32,000.

"Sequencing the corn genome was like driving down miles and miles of desolate highway with only sporadically placed sign posts," says co-investigator Sandra Clifton, Ph.D., of Washington University. "We had a rudimentary map to guide us, but because of the repetitive nature of the genome, some of the landmarks were erroneous. It took the dedicated efforts of many scientists to identify the correct placement of the genes."

Interestingly, plants often have more than one genome and corn is no exception. The maize genome is composed of two separate genomes melded into one, with four copies of many genes. As corn evolved over many thousands of years, some of the duplicated genes were lost and others were shuffled around. A number of genes took on new functions.

Corn is the third cereal-based crop after rice and sorghum and the largest plant genome to date to have its genome sequenced, and scientists will now be able to look for genetic similarities and differences between the crops. "For example, rice grows really well in standing water but corn doesn't," explains co-investigator Robert Fulton, of Washington University. "Now, scientists can compare the two genomes to find variations of corn genes that are more tolerant to wet conditions."

The United States is the world's top corn grower, producing 44 percent of the global crop. In 2009, U.S. farmers are expected to produce nearly 13 billion bushels of corn, according to the U.S. Department of Agriculture.


'/>"/>

Contact: Caroline Arbanas
arbanasc@wustl.edu
314-286-0109
Washington University School of Medicine
Source:Eurekalert  

Related biology technology :

1. Human Genome Sciences Announces $40 Million Milestone Payment Related to Albuferon(R) Development
2. GenVault Partnership with Genome Quebec Brings $3.3 Million Sale of Dynamic Archive Product
3. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Thomas Weisel Partners Conference
4. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at BioCentury-Thomson Financial Investment Conference
5. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Bear Stearns Conference
6. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Merrill Lynch Conference
7. BioNanomatrix Announces Issuance of Key Nanofluidics Patent Enabling Single Molecule Whole Genome Analysis
8. BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome
9. Individual differences caused by shuffled chunks of DNA in the human genome
10. BioNanomatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome
11. Sir Walter Bodmer Joins Oxford Genome Sciences Scientific Advisory Board
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Amaizing: Corn genome decoded
(Date:4/26/2017)... ... , ... LABS, Inc. (LABS) announced in December 2016 that two new ... Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific for IgM and IgG ... blood donors under an Investigational New Drug (IND) study protocol. , Now, as ...
(Date:4/26/2017)... ... 26, 2017 , ... As the call for prior authorization ... the discussion surrounding the topic will continue at WEDI 2017- Driving Solutions in ... Calif. Hosted by the Workgroup for Electronic Data Interchange (WEDI), the nation’s leading ...
(Date:4/25/2017)... California (PRWEB) , ... April 25, 2017 , ... ... Intelligence (AI), leading supplier of Common Lisp (CL) development tools, and market leader ... , which includes key performance enhancements now available within the most effective system ...
(Date:4/25/2017)... ... April 25, 2017 , ... Dr. Robert G. Schwartz, the ... announced today that acclaimed physiatrist Matthew Terzella, MD, has joined the practice as ... Dr. Terzella completed his residency in Physical Medicine and Rehabilitation at UMDNJ-Robert Wood ...
Breaking Biology Technology:
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
Breaking Biology News(10 mins):