Navigation Links
Amaizing: Corn genome decoded

AUDIO: A team of scientists from Washington University in St. Louis, the University of Arizona, Cold Spring Harbor Laboratory and Iowa State University has finished sequencing the DNA of corn. The...

Click here for more information.

In recent years, scientists have decoded the DNA of humans and a menagerie of creatures but none with genes as complex as a stalk of corn, the latest genome to be unraveled.

A team of scientists led by The Genome Center at Washington University School of Medicine in St. Louis published the completed corn genome in the Nov. 20 journal Science, an accomplishment that will speed efforts to develop better crop varieties to meet the world's growing demands for food, livestock feed and fuel.

"Seed companies and maize geneticists will pounce on this data to find their favorite genes," says senior author Richard K. Wilson, Ph.D., director of Washington University's Genome Center, who led the multi-institutional sequencing effort. "Now they'll know exactly where those genes are. Having the complete genome in hand will make it easier to breed new varieties of corn that produce higher yields or are more tolerant to extreme heat, drought, or other conditions."

Corn, also known as maize, is the top U.S. crop and the basis of products ranging from breakfast cereal to toothpaste, shoe polish and ethanol. The corn genome is a hodgepodge of some 32,000 genes crammed into just 10 chromosomes. In comparison, humans have 20,000 genes dispersed among 23 chromosomes.

The $29.5 million maize sequencing project began in 2005 and is funded by the National Science Foundation and the U.S. departments of agriculture and energy. The genome was sequenced at Washington University's Genome Center. The overall effort involved more than 150 U.S. scientists with those at the University of Arizona in Tucson, Cold Spring Harbor Laboratory in New York and Iowa State University in Ames playing key roles.

The group sequenced a variety of corn known as B73, developed at Iowa State decades ago. It is known for its high grain yields and has been used extensively in both commercial corn breeding and in research laboratories.

The genetic code of corn consists of 2 billion bases of DNA, the chemical units that are represented by the letters T, C, G and A, making it similar in size to the human genome, which is 2.9 billion letters long.

But that's where much of the similarity ends. The challenge for Wilson and his colleagues was to string together the order of the letters, an immense and daunting task both because of the corn genome's size and its complex genetic arrangements. About 85 percent of the DNA segments are repeated. Jumping genes, or transposons, that move from place to place make up a significant portion of the genome, further complicating sequencing efforts.

A working draft of the maize genome, unveiled by the same group of scientists in 2008, indicated the plant had 50,000-plus genes. But when they placed the many thousands of DNA segments onto chromosomes in the correct order and closed the remaining gaps, the researchers revised the number of genes to 32,000.

"Sequencing the corn genome was like driving down miles and miles of desolate highway with only sporadically placed sign posts," says co-investigator Sandra Clifton, Ph.D., of Washington University. "We had a rudimentary map to guide us, but because of the repetitive nature of the genome, some of the landmarks were erroneous. It took the dedicated efforts of many scientists to identify the correct placement of the genes."

Interestingly, plants often have more than one genome and corn is no exception. The maize genome is composed of two separate genomes melded into one, with four copies of many genes. As corn evolved over many thousands of years, some of the duplicated genes were lost and others were shuffled around. A number of genes took on new functions.

Corn is the third cereal-based crop after rice and sorghum and the largest plant genome to date to have its genome sequenced, and scientists will now be able to look for genetic similarities and differences between the crops. "For example, rice grows really well in standing water but corn doesn't," explains co-investigator Robert Fulton, of Washington University. "Now, scientists can compare the two genomes to find variations of corn genes that are more tolerant to wet conditions."

The United States is the world's top corn grower, producing 44 percent of the global crop. In 2009, U.S. farmers are expected to produce nearly 13 billion bushels of corn, according to the U.S. Department of Agriculture.


Contact: Caroline Arbanas
Washington University School of Medicine

Related biology technology :

1. Human Genome Sciences Announces $40 Million Milestone Payment Related to Albuferon(R) Development
2. GenVault Partnership with Genome Quebec Brings $3.3 Million Sale of Dynamic Archive Product
3. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Thomas Weisel Partners Conference
4. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at BioCentury-Thomson Financial Investment Conference
5. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Bear Stearns Conference
6. Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Merrill Lynch Conference
7. BioNanomatrix Announces Issuance of Key Nanofluidics Patent Enabling Single Molecule Whole Genome Analysis
8. BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome
9. Individual differences caused by shuffled chunks of DNA in the human genome
10. BioNanomatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome
11. Sir Walter Bodmer Joins Oxford Genome Sciences Scientific Advisory Board
Post Your Comments:
Related Image:
Amaizing: Corn genome decoded
(Date:12/1/2015)... -- The Minnesota High Tech Association (MHTA) has named Rebiotix ... the Small and Growing Healthcare award category. Held November ... Convention Center, the Tekne Awards honor companies and ... new technologies that positively impact the lives and futures ... difficile infection ( C. diff. ), an infection ...
(Date:12/1/2015)... Santa Clara, CA (PRWEB) , ... December 01, ... ... Atomic Force Microscopy (AFM) announces Park NX10 SICM Module, an add-on scanning ion ... that easily integratesthe power of SICM to an AFM. , Park SICM benefits ...
(Date:12/1/2015)... FRANCISCO , Dec. 1, 2015  Symic, a ... affect the extracellular matrix (ECM), today announced that it ... to advance the company,s pipeline, including its lead candidates ... Ventures and includes the participation by all existing major ... funding brings the total capital raised by Symic to ...
(Date:12/1/2015)... ... December 01, 2015 , ... The American Society of Gynecologic ... Kyle Mathews will join fellow surgeons in the shared pursuit of ÔÇťadvancing ... experienced urogynecologist, founder of Plano Urogynecology Associates and Fellow of the American ...
Breaking Biology Technology:
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
(Date:11/12/2015)... , Nov. 12, 2015  Arxspan has entered ... MIT and Harvard for use of its ArxLab ... management tools. The partnership will support the institute,s ... and chemical research information internally and with external ... used for managing the Institute,s electronic laboratory notebook, ...
Breaking Biology News(10 mins):