Navigation Links
All-optical transistor
Date:11/11/2010

Controlling and modulating the flow of light is essential in today's telecommunications-based society. Professor Tobias Kippenberg and his team in EPFL's Laboratory of Photonics and Quantum Measurements have discovered a novel way to couple light and vibrations. Using this discovery, they built a device in which a beam of light traveling through an optical microresonator could be controlled by a second, stronger light beam. The device thus acts like an optical transistor, in which one light beam influences the intensity of another.

Their optical microresonator has two characteristics: first, it traps light in a tiny glass structure, guiding the beam into a circular pattern. Second, the structure vibrates, like a wine glass, at well-defined frequencies. Because the structure is so tiny (a fraction of the diameter of a human hair), these frequencies are 10,000 times higher than a wineglass vibration. When light is injected into the device, the photons exert a force called radiation pressure, which is greatly enhanced by the resonator. The increasing pressure deforms the cavity, coupling the light to the mechanical vibrations. If two light beams are used, the interaction of the two lasers with the mechanical vibrations results in a kind of optical "switch": the strong "control" laser can turn on or off a weaker "probe" laser just as in a electronic transistor.

"We have known for more than two years that this effect was theoretically possible," explains Max-Planck Institute scientist Albert Schliesser, but pinning it down proved difficult. "Once we knew where to look, it was right there," recalls EPFL PhD student Stefan Weis, one of the lead authors of the paper. Senior EPFL scientist Samuel Delglise notes that "the agreement between theory and experiment is really striking."

Applications of this novel effect, baptised "OMIT" (optomechanically-induced transparency), could provide entirely new functionality to photonics. Radiation-to-vibration conversions are already widely used; in mobile phones, for example, a receiver converts electromagnetic radiation to mechanical vibration, enabling the signal to be filtered efficiently. But it has been impossible to do this kind of conversion with light. With an OMIT-based device, an optical light field could for the first time be converted into a mechanical vibration. This could open up a huge range of possibilities in telecommunications. For example, novel optical buffers could be designed that could store optical information for up to several seconds.

On a more fundamental level, researchers around the world have been trying to find ways to control optomechanical systems at the quantum level: the switchable coupling demonstrated by the EPFL-Max Planck team could help the community clear this hurdle, by serving as an important interface in hybrid quantum systems.


'/>"/>

Contact: Tobias Kippenberg
tobias.kippenberg@epfl.ch
41-216-934-428
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert  

Related biology technology :

1. McGill physicists find a new state of matter in a transistor
2. USC researchers print dense lattice of transparent nanotube transistors on flexible base
3. Mysterious charge transport in self-assembled monolayer transistors unraveled
4. Nanoelectronic transistor combined with biological machine could lead to better electronics
5. Nanowires key to future transistors, electronics
6. Scientists create worlds first molecular transistor
7. Nanoribbons for graphene transistors
8. New nanoscale transistors allow sensitive probing inside cells
9. UCLA chemists, engineers achieve world record with high-speed graphene transistors
10. New computer switches handle heat that renders transistors useless
11. Triple-mode transistors show potential
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
All-optical transistor
(Date:3/27/2017)... , March 27, 2017 The new ... a comprehensive library of reports on Valero Energy , ... fuels and petrochemical industries. ...      (Logo: http://photos.prnewswire.com/prnh/20160330/349511LOGO) ... production to go green. Ethanol today, even though touted as ...
(Date:3/27/2017)... March 27, 2017 DarioHealth Corp. (NASDAQ: DRIO), ... and big data solutions, today announced that it is ... option for U.S. consumers who want to have their ... has signed strategic alliance agreements with partners across the ... benefits, and if approved, will supply and bill the ...
(Date:3/24/2017)... , Mar. 24, 2017 Research and ... Cell (hESC) Research - Global Strategic Business Report" report to ... ... (hESC) Research in US$ Million. Annual estimates and forecasts are provided ... derived from primary and secondary research. The report ...
(Date:3/24/2017)... LEXINGTON, Mass. , March 24, 2017 ... pipeline of immune checkpoint antibodies and cancer vaccines, today ... The 7 th  Annual William Blair and Maidstone ... Event Space Alexandria Center in New York, ... March 29 at 9:40 am: ...
Breaking Biology Technology:
(Date:3/23/2017)... Research and Markets has announced the addition of the ... to 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market ... the next decade to reach approximately $14.21 billion by 2025. ... for all the given segments on global as well as regional ...
(Date:3/20/2017)... , March 20, 2017 PMD Healthcare announces ... spirometer and Wellness Management System (WMS), a remote, real-time ... in 2010, PMD Healthcare is a Medical Device, Digital ... mission dedicated to creating innovative solutions that empower people ... that intent focus, PMD developed the first ever personal ...
(Date:3/7/2017)... 7, 2017 Brandwatch , the leading social intelligence ... Prince,s Trust to uncover insights to support its reporting, help ... The UK,s leading youth charity will be using Brandwatch Analytics ... get a better understanding of the topics and issues that are ... ...
Breaking Biology News(10 mins):