Navigation Links
All-optical transistor
Date:11/11/2010

Controlling and modulating the flow of light is essential in today's telecommunications-based society. Professor Tobias Kippenberg and his team in EPFL's Laboratory of Photonics and Quantum Measurements have discovered a novel way to couple light and vibrations. Using this discovery, they built a device in which a beam of light traveling through an optical microresonator could be controlled by a second, stronger light beam. The device thus acts like an optical transistor, in which one light beam influences the intensity of another.

Their optical microresonator has two characteristics: first, it traps light in a tiny glass structure, guiding the beam into a circular pattern. Second, the structure vibrates, like a wine glass, at well-defined frequencies. Because the structure is so tiny (a fraction of the diameter of a human hair), these frequencies are 10,000 times higher than a wineglass vibration. When light is injected into the device, the photons exert a force called radiation pressure, which is greatly enhanced by the resonator. The increasing pressure deforms the cavity, coupling the light to the mechanical vibrations. If two light beams are used, the interaction of the two lasers with the mechanical vibrations results in a kind of optical "switch": the strong "control" laser can turn on or off a weaker "probe" laser just as in a electronic transistor.

"We have known for more than two years that this effect was theoretically possible," explains Max-Planck Institute scientist Albert Schliesser, but pinning it down proved difficult. "Once we knew where to look, it was right there," recalls EPFL PhD student Stefan Weis, one of the lead authors of the paper. Senior EPFL scientist Samuel Delglise notes that "the agreement between theory and experiment is really striking."

Applications of this novel effect, baptised "OMIT" (optomechanically-induced transparency), could provide entirely new functionality to photonics. Radiation-to-vibration conversions are already widely used; in mobile phones, for example, a receiver converts electromagnetic radiation to mechanical vibration, enabling the signal to be filtered efficiently. But it has been impossible to do this kind of conversion with light. With an OMIT-based device, an optical light field could for the first time be converted into a mechanical vibration. This could open up a huge range of possibilities in telecommunications. For example, novel optical buffers could be designed that could store optical information for up to several seconds.

On a more fundamental level, researchers around the world have been trying to find ways to control optomechanical systems at the quantum level: the switchable coupling demonstrated by the EPFL-Max Planck team could help the community clear this hurdle, by serving as an important interface in hybrid quantum systems.


'/>"/>

Contact: Tobias Kippenberg
tobias.kippenberg@epfl.ch
41-216-934-428
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert  

Related biology technology :

1. McGill physicists find a new state of matter in a transistor
2. USC researchers print dense lattice of transparent nanotube transistors on flexible base
3. Mysterious charge transport in self-assembled monolayer transistors unraveled
4. Nanoelectronic transistor combined with biological machine could lead to better electronics
5. Nanowires key to future transistors, electronics
6. Scientists create worlds first molecular transistor
7. Nanoribbons for graphene transistors
8. New nanoscale transistors allow sensitive probing inside cells
9. UCLA chemists, engineers achieve world record with high-speed graphene transistors
10. New computer switches handle heat that renders transistors useless
11. Triple-mode transistors show potential
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
All-optical transistor
(Date:5/26/2016)... Diego, CA (PRWEB) , ... May 26, 2016 ... ... development and manufacturing company, today announced several positive developments that position the Company ... As a result of the transaction, Craig F. Kinghorn has been appointed Chairman ...
(Date:5/25/2016)... ... May 25, 2016 , ... ... became double board-certified in surgery and surgery of the hand by the National ... no stranger to going above and beyond in his pursuit of providing the ...
(Date:5/25/2016)... ... 25, 2016 , ... Biohaven Pharmaceutical Holding Company Ltd. (Biohaven) ... company’s orphan drug designation request covering BHV-4157 for the treatment of Spinocerebellar Ataxia ... , Spinocerebellar ataxia is a rare, debilitating neurodegenerative disorder that is estimated ...
(Date:5/23/2016)... ... May 23, 2016 , ... The need for blood donations in South Texas and across ... South Texas Blood & Tissue Center, blood donations are on the decline. In fact, donations ... are down 21 percent in South Texas in the last four years alone. , There ...
Breaking Biology Technology:
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
(Date:3/22/2016)... and SANDY, Utah , ... which operates the highest sample volume laboratory in ... Genomics and UNIConnect, leaders in clinical sequencing informatics and ... launch of a project to establish the informatics infrastructure ... NSO has been contracted by the Ontario ...
Breaking Biology News(10 mins):