Navigation Links
All done with mirrors: NIST microscope tracks nanoparticles in 3-D
Date:3/10/2008

A clever new microscope design allows nanotechnology researchers at the National Institute of Standards and Technology (NIST) to track the motions of nanoparticles in solution as they dart around in three dimensions. The researchers hope the technology, which NIST plans to patent, will lead to a better understanding of the dynamics of nanoparticles in fluids and, ultimately, process control techniques to optimize the assembly of nanotech devices.

While some nanoscale fabrication techniques borrow from the lithography and solid state methods of the microelectronics industry, an equally promising approach relies on directed self-assembly. This capitalizes on physical properties and chemical affinities of nanoparticles in solutions to induce them to gather and arrange themselves in desired structures at desired locations. Potential products include extraordinarily sensitive chemical and biological sensor arrays, and new medical and diagnostic materials based on quantum dots and other nanoscale materials. But when your product is too small to be seen, monitoring the assembly process is difficult.

Microscopes can help, but a microscope sees a three-dimensional fluid volume as a 2-D plane. Theres no real sense of the up and down movement of particles in its field of view except that they get more or less fuzzy as they move across the plane where the instrument is in focus. To date, attempts to provide a 3-D view of the movements of nanoparticles in solution largely have relied on that fuzziness. Optics theory and mathematics can estimate how far a particle is above or below the focal plane based on diffraction patterns in the fuzziness. The math, however, is extremely difficult and time consuming and the algorithms are imprecise in practice.

One alternative, NIST researchers reported at the annual meeting of the American Physical Society,* is to use geometry instead of algebra. Specifically, angled side walls of the microscopic sample well act as mirrors to reflect side views of the volume up to the microscope at the same time as the top view. (The typical sample well is 20 microns square and 15 microns deep.) The microscope sees each particle twice, one image in the horizontal plane and one in the vertical. Because the two planes have one dimension in common, its a simple calculation to correlate the two and figure out each particles 3-D path. Basically, we reduce the problem of tracking in 3-D to the problem of tracking in 2-D twice, explains lead author Matthew McMahon.

The 2-D problem is simpler to solveseveral software techniques can calculate and track 2-D position to better than 10 nanometers. Measuring the nanoparticle motion at that fine scalespeeds, diffusion and the likewill allow researchers to calculate the forces acting on the particles and better understand the basic rules of interaction between the various components. That in turn will allow better design and control of nanoparticle assembly processes.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Nikon Instruments Launches Fully-Automated A1 Confocal Laser Microscope Series
2. Nikon Unveils the Eclipse Ti Inverted Microscope Series at The Society for Neroscience Annual Meeting
3. Nikon Instruments Launches New Eclipse Ti-E Fully-Integrated, Motorized Inverted Microscope
4. Millennium Research Group Offers New Marketrack Service that Tracks European Dental Implant Market
5. Strengthening fluids with nanoparticles
6. DNA technique yields 3-D crystalline organization of nanoparticles
7. Anthrax vaccine produces immunity with nanoparticles, not needles
8. Anthrax vaccine produces immunity with nanoparticles, not needles
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
All done with mirrors: NIST microscope tracks nanoparticles in 3-D
(Date:1/18/2017)... ... January 18, 2017 , ... DrugDev ... for Clinical Ops Executives (Hyatt Regency Miami, January 24-26). DrugDev will join customers ... research issues such as trial performance metrics, patient enrollment diversity, protocol optimization, and ...
(Date:1/18/2017)... ... January 18, 2017 , ... ... of the latest paper by its Science Editor, Dr. Elisabeth Bik, in the ... Medische Microbiologie). Dr. Bik joined uBiome in October 2016 from her previous position ...
(Date:1/18/2017)... 2017 Shareholder rights law firm Johnson & ... board members of CoLucid Pharmaceuticals, Inc. (NASDAQ: ... the proposed sale of the Company to Eli Lilly ... small molecules for the acute treatment of migraines. ... signed a definitive merger agreement with Eli Lilly. Under ...
(Date:1/18/2017)... 2017  Caris Life Sciences, a leading innovator ... largest private funder of pancreatic cancer research, are ... impact of immunotherapy in the treatment of pancreatic ... to identify potential trial candidates based on biomarker ... and study investigators. The Lustgarten Foundation is a ...
Breaking Biology Technology:
(Date:12/15/2016)... Calif. , Dec. 15, 2016   WaferGen ... publicly held genomics technology company, announced today that on ... Listing Qualifications Department of The Nasdaq Stock Market LLC ... closing bid price of WaferGen,s common stock had been ... Accordingly, WaferGen has regained compliance with Listing Rule 5550(a)(2) ...
(Date:12/15/2016)... 14, 2016 "Increase in mobile transactions is ... mobile biometrics market is expected to grow from USD ... 2022, at a CAGR of 29.3% between 2016 and ... the growing demand for smart devices, government initiatives, and ... "Software component is expected to grow at a high ...
(Date:12/7/2016)... 2016 According to a new market research report "Emotion ... Expression, Voice Recognition), Service, Application Area, End User, And Region - Global Forecast ... USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a ... Reading ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):