Navigation Links
All done with mirrors: NIST microscope tracks nanoparticles in 3-D
Date:3/10/2008

A clever new microscope design allows nanotechnology researchers at the National Institute of Standards and Technology (NIST) to track the motions of nanoparticles in solution as they dart around in three dimensions. The researchers hope the technology, which NIST plans to patent, will lead to a better understanding of the dynamics of nanoparticles in fluids and, ultimately, process control techniques to optimize the assembly of nanotech devices.

While some nanoscale fabrication techniques borrow from the lithography and solid state methods of the microelectronics industry, an equally promising approach relies on directed self-assembly. This capitalizes on physical properties and chemical affinities of nanoparticles in solutions to induce them to gather and arrange themselves in desired structures at desired locations. Potential products include extraordinarily sensitive chemical and biological sensor arrays, and new medical and diagnostic materials based on quantum dots and other nanoscale materials. But when your product is too small to be seen, monitoring the assembly process is difficult.

Microscopes can help, but a microscope sees a three-dimensional fluid volume as a 2-D plane. Theres no real sense of the up and down movement of particles in its field of view except that they get more or less fuzzy as they move across the plane where the instrument is in focus. To date, attempts to provide a 3-D view of the movements of nanoparticles in solution largely have relied on that fuzziness. Optics theory and mathematics can estimate how far a particle is above or below the focal plane based on diffraction patterns in the fuzziness. The math, however, is extremely difficult and time consuming and the algorithms are imprecise in practice.

One alternative, NIST researchers reported at the annual meeting of the American Physical Society,* is to use geometry instead of algebra. Specifically, angled side walls of the microscopic sample well act as mirrors to reflect side views of the volume up to the microscope at the same time as the top view. (The typical sample well is 20 microns square and 15 microns deep.) The microscope sees each particle twice, one image in the horizontal plane and one in the vertical. Because the two planes have one dimension in common, its a simple calculation to correlate the two and figure out each particles 3-D path. Basically, we reduce the problem of tracking in 3-D to the problem of tracking in 2-D twice, explains lead author Matthew McMahon.

The 2-D problem is simpler to solveseveral software techniques can calculate and track 2-D position to better than 10 nanometers. Measuring the nanoparticle motion at that fine scalespeeds, diffusion and the likewill allow researchers to calculate the forces acting on the particles and better understand the basic rules of interaction between the various components. That in turn will allow better design and control of nanoparticle assembly processes.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Nikon Instruments Launches Fully-Automated A1 Confocal Laser Microscope Series
2. Nikon Unveils the Eclipse Ti Inverted Microscope Series at The Society for Neroscience Annual Meeting
3. Nikon Instruments Launches New Eclipse Ti-E Fully-Integrated, Motorized Inverted Microscope
4. Millennium Research Group Offers New Marketrack Service that Tracks European Dental Implant Market
5. Strengthening fluids with nanoparticles
6. DNA technique yields 3-D crystalline organization of nanoparticles
7. Anthrax vaccine produces immunity with nanoparticles, not needles
8. Anthrax vaccine produces immunity with nanoparticles, not needles
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
All done with mirrors: NIST microscope tracks nanoparticles in 3-D
(Date:8/15/2017)... , ... August 15, 2017 , ... The Conference ... on Immuno-Oncology 360° (IO360°) programming through a series of upcoming panels and events. The ... 7-9, 2018, at The Roosevelt Hotel in New York City. , “With our experience ...
(Date:8/14/2017)... ... August 14, 2017 , ... Every year, ... researchers in the antibody community have recently come together to address this antibody ... the laboratory. , The team at Thermo Fisher Scientific ...
(Date:8/11/2017)... , Aug. 11, 2017  Market researcher ... York Times article regarding the telemedicine market.  ... to Kalorama Information.  The article, "Heart ... That"  used information from Kalorama Information,s ... & Telemedicine Market  (Sleep, Diabetes, Vital ...
(Date:8/11/2017)... ... 2017 , ... “There is an increasing consumer call for ... ingredients,” said Matt Hundt, President of Third Wave Bioactives. “Combining the strong discovery ... of Biorigin will allow us to bring truly novel fermented ingredient technologies to ...
Breaking Biology Technology:
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
(Date:4/5/2017)... -- Today HYPR Corp. , leading innovator in ... the HYPR platform is officially FIDO® Certified . ... that empowers biometric authentication across Fortune 500 enterprises and ... 15 million users across the financial services industry, however ... suites and physical access represent a growing portion of ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):