Navigation Links
All aboard the nanotrain network
Date:11/10/2013

Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA, have been developed by scientists at Oxford University and Warwick University.

The system can construct its own network of tracks spanning tens of micrometres in length, transport cargo across the network and even dismantle the tracks.

The work is published in Nature Nanotechnology and was supported by the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council.

Researchers were inspired by the melanophore, used by fish cells to control their colour. Tracks in the network all come from a central point, like the spokes of a bicycle wheel. Motor proteins transport pigment around the network, either concentrating it in the centre or spreading it throughout the network. Concentrating pigment in the centre makes the cells lighter, as the surrounding space is left empty and transparent.

The system developed by the Oxford University team is very similar, and is built from DNA and a motor protein called kinesin. Powered by ATP fuel, kinesins move along the micro-tracks carrying control modules made from short strands of DNA. 'Assembler' nanobots are made with two kinesin proteins, allowing them to move tracks around to assemble the network, whereas the 'shuttles' only need one kinesin protein to travel along the tracks.

'DNA is an excellent building block for constructing synthetic molecular systems, as we can program it to do whatever we need,' said Adam Wollman, who conducted the research at Oxford University's Department of Physics. 'We design the chemical structures of the DNA strands to control how they interact with each other. The shuttles can be used to either carry cargo or deliver signals to tell other shuttles what to do.

'We first use assemblers to arrange the track into 'spokes', triggered by the introduction of ATP. We then send in shuttles with fluorescent green cargo which spread out across the track, covering it evenly. When we add more ATP, the shuttles all cluster in the centre of the track where the spokes meet. Next, we send signal shuttles along the tracks to tell the cargo-carrying shuttles to release the fluorescent cargo into the environment, where it disperses. We can also send shuttles programmed with 'dismantle' signals to the central hub, telling the tracks to break up.'

This demonstration used fluorescent green dyes as cargo, but the same methods could be applied to other compounds. As well as colour changes, spoke-like track systems could be used to speed up chemical reactions by bringing the necessary compounds together at the central hub. More broadly, using DNA to control motor proteins could enable the development of more sophisticated self-assembling systems for a wide variety of applications.


'/>"/>

Contact: University of Oxford Press Office
press.office@admin.ox.ac.uk
44-186-528-3877
University of Oxford
Source:Eurekalert  

Related biology technology :

1. Sabiya Donates Odor-Fighting Athletic Apparel to the Corps of Exploration Aboard E/V Nautilus
2. International Attendance for Networking and Education at Informex Beyond Manufacturing
3. CellerateRX® Added to List of Preferred Products for Golden Living Healthcare Network
4. ConnectBiotech.org Launched, a Unique Life Science Business Networking Site
5. Self-assembling nanorods: Berkeley Lab researchers obtain 1-, 2- and 3-D nanorod arrays and networks
6. Statewide Network of Angel Investor Groups Announced in Alabama
7. Good Shepherd Rehabilitation Network Becomes Third Health-Care Organization in U.S. to Have Ekso Exoskeleton
8. Social networking shortcut to finding medical experts
9. Autism mutations, scattered across many genes, merge into common network of interactions
10. Aviir Laboratories Announce National Agreement with Three Rivers Provider Network
11. Cambridge Healthtech Associates™ Co-Sponsors BIO Debrief Networking Reception with Xconomy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
All aboard the nanotrain network
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... ... 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th ... in San Francisco, CA. The Summit brings together current and former FDA office bearers, ... and government officials from around the world to address key issues in device compliance, ...
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
Breaking Biology Technology:
(Date:8/23/2017)... -- The general public,s help is being enlisted in what,s thought to be ... on the human body –and are believed to affect health.  ... The Microbiome Immunity Project is the largest study ... gut. The project's goal is to help advance scientific knowledge of the ... ...
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at VivaTech ... startups and global businesses, taking place in Paris ... will showcase the solutions they have built with IBM Watson ... France is one of the most dynamic ... in the number of startups created between 2012 and 2015*, ...
(Date:4/24/2017)... 2017 Janice Kephart , former ... Strategy Partners, LLP (IdSP) , today issues the ... Trump,s March 6, 2017 Executive Order: Protecting ... can be instilled with greater confidence, enabling the ... refugee applications are suspended by until at least ...
Breaking Biology News(10 mins):