Navigation Links
A step towards new vaccines for most important chicken parasite
Date:10/13/2011

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC), among others, have taken the first step in developing a new type of vaccine to protect chickens against coccidiosis, the most important parasite of poultry globally.

A vaccine of this type -- based on proteins from the coccidiosis bug rather than being derived from a live parasite -- could be produced on a larger scale than is currently possible so could be used to provide much more widespread protection to chicken flocks.

Protecting against animal diseases is going to play an important role in ensuring global food security.

The researchers have produced a much more detailed picture of how coccidiosis attacks chickens, uncovering the protein molecules which are secreted onto the surface of the coccidiosis-causing-parasite, Eimeria, that allow it to attach-to and invade cells in a chicken's gut. The scientists also found that when purified and used to inoculate chickens, one of these molecules provided the birds with some protection against coccidiosis and so shows promise as the basis of a new vaccine.

The research was carried out by an international team with funding from BBSRC, the Engineering and Physical Sciences Research Council (EPSRC), the Medical Research Council (MRC) and the Wellcome Trust. The research is published today (13 October) in the journal PLoS Pathogens and the UK-based research took place at Imperial College London, the Institute for Animal Health, the University of Oxford and the Royal Veterinary College.

Professor Fiona Tomley of the Royal Veterinary College said "Coccidiosis is the most important parasite of poultry globally. Conservative estimates by the EU put the annual worldwide cost of coccidiosis at over 1billion so controlling it is very important economically but it is also valuable for improving the health and welfare of chickens."

Currently, coccidiosis is treated with antimicrobial drugs or using a vaccine derived from a live parasite. Both of these methods are problematic as drug resistance is widespread and the vaccine is relatively expensive to produce so cannot be used on a wide, preventative scale. Vaccines for some other diseases are based on single proteins rather than killed versions of the disease-causing bug. These so-called 'recombinant vaccines' offer a number of advantages over killed-disease vaccines as they are safer and can be produced more cheaply and quickly and on an industrial scale.

The protein revealed in this study could form the basis of a recombinant vaccine. It is called MIC3 and is important in the early stages of a coccidiosis infection. MIC3 is secreted by the Emeria parasite and binds to sugar molecules on the surface of cells in the caecum, a section of the large intestine. Another scientist involved in this project, Professor Ten Feizi, and her team at Imperial College London, used a new and powerful technology known as carbohydrate microarray to study the particular sugar molecules which the parasite's MIC3 protein seeks out and binds.

Professor Stephen Matthews of Imperial College London said "Finding a target protein that could form the basis of a new type of vaccine for coccidiosis has been the holy grail for researchers combating coccidiosis for some time. The high resolution detail afforded by NMR spectroscopy on recombinant vaccines provides important clues for their optimal design, and paves the way for cost-effective and widespread protection against this important poultry disease."

Professor Douglas Kell, BBSRC Chief Executive, said "Finding new ways to combat diseases of farmed animals is going to be important to ensure global food security -- but also to the UK economy. We have a valuable poultry breeding and production industry in this country so any steps towards a new vaccine for coccidiosis are a triumph. This work is a nice example of how studying the fundamental biology of a process at the most minute level could lead to new weapons in the fight against disease. It also underscores the increasing importance of biologics to the UK Bioeconomy".


'/>"/>
Contact: Mike Davies
mike.davies@bbsrc.ac.uk
01-793-414-694
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology technology :

1. Mendel Trait Technology Advances Towards Commercial Launch
2. Kibow Biotech, Inc. Secures $2.4 Million Towards Its Human Clinical Trials by Continued Veterinary Licensing Agreement
3. Scientists take a step towards developing better vaccines for bluetongue
4. Key milestone towards the development of a new clinically useful antibiotic
5. Corgenix and Tulane Announce Award of Additional NIH Contract to Expand Lassa Fever Research Towards Development of Vaccines and Improved Therapeutic Agents
6. The Institut Pasteur and Merieux Alliance Take First Step Towards a Long-Term Research Partnership in the Field of Infectious Diseases
7. Pharmalink AB Strengthens its Board of Directors and Signals a Strategic Step Towards Late Phase Product Development
8. New Health Retreat Gives a Fresh Attitude Towards Disease Prevention
9. GEECF: Spectrum Launches Zero Waste Philippines and Gears Towards Cheap Green Energy
10. Towards zero training for brain-computer interfacing
11. Malaria discovery gives hope for new drugs and vaccines
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... , June 27, 2016  Sequenom, Inc. (NASDAQ: ... to enabling healthier lives through the development of innovative ... of the United States denied ... that the claims of Sequenom,s U.S. Patent No. 6,258,540 ... eligibility criteria established by the Supreme Court,s Mayo Collaborative ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The ... is proud to add Target to its list of well-respected retailers. This list ...
Breaking Biology Technology:
(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
Breaking Biology News(10 mins):