Navigation Links
A shock to pollution in chemistry

Solvents are omnipresent in the chemical industry, and are a major environmental and safety concern. Therefore the large interest in mechanochemistry: an energy-efficient alternative that avoids using bulk solvents and uses high-frequency milling to drive reactions. Milling is achieved by the intense impact of steel balls in a rapidly moving jar, which hinders the direct observation of underlying chemistry. Scientists have now for the first time studied a milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixes, grinds and transforms simple ingredients into a complex product. This study opens new opportunities in Green Chemistry and environmentally-friendly synthesis. The results are published in Nature Chemistry dated 2 December 2012.

The international team of scientists was led by Tomislav Fričić of McGill University (Canada) in collaboration with Ivan Halasz from the University of Zagreb (Croatia), scientists from the University of Cambridge (UK), Max-Planck-Institute for Solid State Research in Stuttgart (Germany) and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).

Everybody remembering their chemistry lessons will recall mixing ingredients into a solvent. This was sometimes water, but more often a solvent such as ether (flammable), chloroform (toxic) or benzene (cancerogenic). Bulk solvents used in industry pose a serious threat to human health and the environment, and their responsible management has a considerable cost. Although it is well known that mechanical action can break chemical bonds, for example in tear and wear of textile fibres, it is much less known that mechanical force can also be used to synthesize new chemical compounds and materials. In recent years, ball milling has become increasingly popular in the production of highly complex chemical structures. In such synthesis, steel balls are shaken with the reactants and catalysts in a rapidly vibrating jar. Chemical transformations take place at the sites of ball collision, where impact causes instant "hot spots" of localized heat and pressure. This is difficult to model and, without access to real time reaction monitoring, mechanochemistry remained poorly understood. "When we set out to study these reactions, the challenge was to observe the entire reaction without disturbing it, in particular the short-lived intermediates that appear and disappear under continuous impact in less than a minute", says Tomislav Fričić, a Professor at McGill University in Montreal.

The team of scientists chose to study mechanochemical production of the metal-organic framework ZIF-8 (sold as Basolite Z1200) from the simplest and non-toxic components. Materials such as ZIF-8 are rapidly gaining popularity for capturing large amounts of CO2 and, if manufactured cheaply and sustainably, could become widely used for carbon capture, catalysis and even hydrogen storage. "The team came to the ESRF because of our high-energy X-rays capable of penetrating 3 mm thick walls of a rapidly moving reaction jar made of steel, aluminium or plastic. The X-ray beam must get inside the jar to probe the mechanochemical formation of ZIF-8, and then out again to detect the changes as they happened", says Simon Kimber, a scientist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, who is a member of the team. This unprecedented methodology enabled the real-time observation of reaction kinetics, reaction intermediates and the development of their respective nanoparticles.

This technique is not limited to ZIF-8. In principle, all types of chemical reactions in a ball mill can now be studied and optimized for industrial processing. 'These results hold promise for improving the fundamental understanding of processes central to pharmaceutical, metallurgical, cement and mineral industries and should enable a more efficient use of energy, reduction in solvent and optimize the use of often expensive catalysts. This translates into good news for the environment, the industry and the consumers who will have to pay less", concludes Tomislav Fričić.


Contact: Claus habfast
European Synchrotron Radiation Facility

Related biology technology :

1. Sangart Raises Additional $50M Series G Funding Following Interim Safety Analysis Of Phase 2b Study Of MP4OX In Severe Trauma Patients With Hemorrhagic Shock
2. India In Vitro Diagnostics Market Outlook to 2017- Clinical Chemistry Genetic Testing, Haematology, Histology and Cytology, Immuno Chemistry, Infectious Immunology and Microbiology Culture
3. Berkeley Lab Director Paul Alivisatos wins Wolf Prize in Chemistry
4. Startling results in synthetic chemistry presented in Nature Chemistry
5. CEM President and CEO Delivers Commencement Address at the 2012 University of Texas at Austin Chemistry and Biochemistry Department Graduation
6. CAS Names 2012 SciFinder® Future Leaders in Chemistry Program Participants
7. Nano-FTIR - A new era in modern analytical chemistry
Post Your Comments:
Related Image:
A shock to pollution in chemistry
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... 23, 2016  The Prostate Cancer Foundation (PCF) is pleased to ... faster cures for prostate cancer. Members of the Class of 2016 were selected ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology:
(Date:6/7/2016)... TORONTO , June 7, 2016  Syngrafii ... begun a business relationship that includes integrating Syngrafii,s ... pilot branch project. This collaboration will result in ... for the credit union, while maintaining existing document ... ...
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
Breaking Biology News(10 mins):