Navigation Links
A paperweight for platinum

RICHLAND, Wash. -- A new combination of nanoparticles and graphene results in a more durable catalytic material for fuel cells, according to work published today online at the Journal of the American Chemical Society. The catalytic material is not only hardier but more chemically active as well. The researchers are confident the results will help improve fuel cell design.

"Fuel cells are an important area of energy technology, but cost and durability are big challenges," said chemist Jun Liu. "The unique structure of this material provides much needed stability, good electrical conductivity and other desired properties."

Liu and his colleagues at the Department of Energy's Pacific Northwest National Laboratory, Princeton University in Princeton, N.J., and Washington State University in Pullman, Wash., combined graphene, a one-atom-thick honeycomb of carbon with handy electrical and structural properties, with metal oxide nanoparticles to stabilize a fuel cell catalyst and make it better available to do its job.

"This material has great potential to make fuel cells cheaper and last longer," said catalytic chemist Yong Wang, who has a joint appointment with PNNL and WSU. "The work may also provide lessons for improving the performance of other carbon-based catalysts for a broad range of industrial applications."

Muscle Metal Oxide

Fuel cells work by chemically breaking down oxygen and hydrogen gases to create an electrical current, producing water and heat in the process. The centerpiece of the fuel cell is the chemical catalyst -- usually a metal such as platinum -- sitting on a support that is often made of carbon. A good supporting material spreads the platinum evenly over its surface to maximize the surface area with which it can attack gas molecules. It is also electrically conductive.

Fuel cell developers most commonly use black carbon -- think pencil lead -- but platinum atoms tend to clump on such carbon. In addition, water can degrade the carbon away. Another support option is metal oxides -- think rust -- but what metal oxides make up for in stability and catalyst dispersion, they lose in conductivity and ease of synthesis. Other researchers have begun to explore metal oxides in conjunction with carbon materials to get the best of both worlds.

As a carbon support, Liu and his colleagues thought graphene intriguing. The honeycomb lattice of graphene is porous, electrically conductive and affords a lot of room for platinum atoms to work. First, the team crystallized nanoparticles of the metal oxide known as indium tin oxide -- or ITO -- directly onto specially treated graphene. Then they added platinum nanoparticles to the graphene-ITO and tested the materials.


The team viewed the materials under high-resolution microscopes at EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus. The images showed that without ITO, platinum atoms clumped up on the graphene surface. But with ITO, the platinum spread out nicely. Those images also showed catalytic platinum wedged between the nanoparticles and the graphene surface, with the nanoparticles partially sitting on the platinum like a paperweight.

To see how stable this arrangement was, the team performed theoretical calculations of molecular interactions between the graphene, platinum and ITO. This number-crunching on EMSL's Chinook supercomputer showed that the threesome was more stable than the metal oxide alone on graphene or the catalyst alone on graphene.

But stability makes no difference if the catalyst doesn't work. In tests for how well the materials break down oxygen as they would in a fuel cell, the triple-threat packed about 40% more of a wallop than the catalyst alone on graphene or the catalyst alone on other carbon-based supports such as activated carbon.

Last, the team tested how well the new material stands up to repeated usage by artificially aging it. After aging, the tripartite material proved to be three times as durable as the lone catalyst on graphene and twice as durable as on commonly used activated carbon. Corrosion tests revealed that the triple threat was more resistant than the other materials tested as well.

The team is now incorporating the platinum-ITO-graphene material into experimental fuel cells to determine how well it works under real world conditions and how long it lasts.


Contact: Mary Beckman
DOE/Pacific Northwest National Laboratory

Related biology technology :

1. For platinum catalysts, smaller may be better
2. Boston Scientific Begins PLATINUM PLUS Trial for PROMUS(R) Element(TM) Stent System
3. New Class of Platinum-Based Anti-Tumor Drugs, Bisplatinates, Demonstrates Potent Anti-Tumor Activity and Ability to Overcome Resistance to Currently Available Platinum-Based Agents
4. Telik Announces Top-Line Results From Assist-5 Trial of Telcyta(R) in Combination With Pegylated Liposomal Doxorubicin in Platinum Refractory and Resistant Ovarian Cancer
5. Exiqon Announces Positive Clinical Data From EORTC Clinical Trial Showing Oncotech EDR Assay Predicts Resistance to Platinum-Based Therapy in Ovarian Cancer
Post Your Comments:
Related Image:
A paperweight for platinum
(Date:11/24/2015)... 24, 2015  Asia-Pacific (APAC) holds the third-largest ... market. The trend of outsourcing to low-cost locations ... higher volume share for the region in the ... margins in the CRO industry will improve. ... ( ), finds that the market earned ...
(Date:11/24/2015)... ... 24, 2015 , ... Copper is an essential micronutrient that ... proteins, copper is also toxic to cells. With a $1.3 million award from ... conduct a systematic study of copper in the bacteria Pseudomonas aeruginosa (P. aeruginosa), ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader SAP and ... to develop and pitch their BIG ideas to improve health and wellness in their ... votes to win the title of SAP's Teen Innovator, an all-expenses paid trip to ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
Breaking Biology Technology:
(Date:10/29/2015)... Oct. 29, 2015  Rubicon Genomics, Inc., today ... distribution of its DNA library preparation products, including ... new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been ... of NGS libraries for liquid biopsies--the analysis of ... prognostic applications in cancer and other conditions. Eurofins ...
(Date:10/29/2015)... , Oct. 29, 2015 Today, ... announced a partnership with 2XU, a global leader ... deliver a smart hat with advanced bio-sensing technology. ... other athletes to monitor key biometrics to improve ... strategic partnership, the two companies will bring together the ...
(Date:10/27/2015)... Calif. , Oct. 27, 2015 Synaptics Inc. ... solutions, today announced that Google has adopted the Synaptics ... touch controller solutions to power its newest flagship smartphones, ... by Huawei. --> ... like Google to provide strategic collaboration in the joint ...
Breaking Biology News(10 mins):