Navigation Links
A nano car with molecular 4-wheel drive

To carry out mechanical work, one usually turns to engines, which transform chemical, thermal or electrical energy into kinetic energy in order to, say, transport goods from A to B. Nature does the same thing; in cells, so-called motor proteins such as kinesin and the muscle protein actin carry out this task. Usually they glide along other proteins, similar to a train on rails, and in the process "burn" ATP (adenosine triphosphate), the chemical fuel, so to speak, of the living world.

A number of chemists aim to use similar principles and concepts to design molecular transport machines, which could then carry out specific tasks on the nano scale. According to an article in the latest edition of science magazine Nature, scientists at the University of Groningen and at Empa have successfully taken "a decisive step on the road to artificial nano-scale transport systems". They have synthesised a molecule from four rotating motor units, i.e. wheels, which can travel straight ahead in a controlled manner. "To do this, our car needs neither rails nor petrol; it runs on electricity. It must be the smallest electric car in the world and it even comes with 4-wheel drive" comments Empa researcher Karl-Heinz Ernst.

Range per tank of fuel: still room for improvement

The downside: the small car, which measures approximately 4x2 nanometres about one billion times smaller than a VW Golf needs to be refuelled with electricity after every half revolution of the wheels via the tip of a scanning tunnelling microscope (STM). Furthermore, due to their molecular design, the wheels can only turn in one direction. "In other words: there's no reverse gear", says Ernst, who is also a professor at the University of Zurich, laconically.

According to its "construction plan" the drive of the complex organic molecule functions as follows: after sublimating it onto a copper surface and positioning an STM tip over it leaving a reasonable gap, Ernst's colleague, Manfred Parschau, applied a voltage of at least 500 mV. Now electrons should "tunnel" through the molecule, thereby triggering reversible structural changes in each of the four motor units. It begins with a cis-trans isomerisation taking place at a double bond, a kind of rearrangement in an extremely unfavourable position in spatial terms, though, in which large side groups fight for space. As a result, the two side groups tilt to get past each other and end up back in their energetically more favourable original position the wheel has completed a half turn. If all four wheels turn at the same time, the car should travel forwards. At least, according to theory based on the molecular structure.

To drive or not to drive a simple question of orientation

And this is what Ernst and Parschau observed: after ten STM stimulations, the molecule had moved six nanometres forwards in a more or less straight line. "The deviations from the predicted trajectory result from the fact that it is not at all a trivial matter to stimulate all four motor units at the same time", explains "test driver" Ernst.

Another experiment showed that the molecule really does behave as predicted. A part of the molecule can rotate freely around the central axis, a C-C single bond the chassis of the car, so to speak. It can therefore "land" on the copper surface in two different orientations: in the right one, in which all four wheels turn in the same direction, and in the wrong one, in which the rear axle wheels turn forwards but the front ones turn backwards upon excitation the car remains at a standstill. Ernst und Parschau were able to observe this, too, with the STM.

Therefore, the researchers have achieved their first objective, a "proof of concept", i.e. they have been able to demonstrate that individual molecules can absorb external electrical energy and transform it into targeted motion. The next step envisioned by Ernst and his colleagues is to develop molecules that can be driven by light, perhaps in the form of UV lasers

Contact: Prof. Dr. Karl-Heinz Ernst, Empa Nanoscale Materials Science
Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related biology technology :

1. Shaken, not stirred: Berkeley lab scientists spy molecular maneuvers
2. Amsterdam Molecular Therapeutics Provides Operations Update & Strategic Review of Pipeline
3. Amsterdam Molecular Therapeutics Receives Opinion on Re-examination of Glybera® Marketing Authorisation Application
4. Researchers turn viruses into molecular Legos
5. Sequenom Center for Molecular Medicine Announces Launch of MaterniT21™ Noninvasive Prenatal Test for Down Syndrome
6. Catching molecular motion at just the right time
7. Global Molecular Cytogenetics Industry
8. ImaginAb, Inc. Announces Formation of Singapore Subsidiary, ImaginAb Molecular Imaging Pte Ltd.
9. Amsterdam Molecular Therapeutics Licenses Additional Novel Gene Therapy Vectors from National Institutes of Health
10. Amsterdam Molecular Therapeutics Reports Half-Year Results 2011
11. Chemists create molecular polyhedron -- and potential to enhance industrial and consumer products
Post Your Comments:
(Date:10/13/2015)... ... , ... The shortlist of finalists for the Pistoia Alliance President’s Startup Challenge ... from across Europe and the USA. , The Startup Challenge 2015 has seen startup ... in life sciences R&D, with over 30 entries submitted. A panel of expert judges ...
(Date:10/13/2015)... , ... October 13, 2015 , ... ... Universal SuperHeat Controller/Sensor (USHX) product, launches today on the Android smartphone platform. Southern ... system with DMQ’s remote control and monitoring capability for the first time to ...
(Date:10/13/2015)... , Oct. 13, 2015  Amgen (NASDAQ: ... and Cocoon Biotech, Inc. are Amgen,s 2015 selection for ... space at LabCentral. LabCentral is an innovative, shared laboratory ... startups. Cambridge, Mass. ... ways to deliver potential life-changing therapies. --> ...
(Date:10/13/2015)... SUNNYVALE, Calif. , Oct. 13, 2015  Cepheid ... the quarter ending September 30, 2015. ... financial results, total revenue for the third quarter of ... net loss per share is expected to be approximately ... financial results, non-GAAP net loss per share for the ...
Breaking Biology Technology:
(Date:10/13/2015)... MATEO, Calif. , Oct. 13, 2015 ... real-time, machine-based learning to analyze big data and minimize ... today with Emailage , an innovative fraud prevention ... leverage transactional risk based on a user,s email address. ... a machine learning solution that combines email risk assessment ...
(Date:10/13/2015)... 13, 2015 Dragon Capital Group Corp. ... China , announced today that its wholly ... received a contract for Multi-Format Naked Eye 3D System for ... $450,000 for the project that is expected to be completed ... 35% in gross profits. --> ...
(Date:10/13/2015)... , Oct. 7, 2015 Research and ... the "India Biometrics Authentication & Identification Market - ... --> --> ... $823.46 million in 2014 to $2.06 billion in 2020 ... 2020. India . Growing ...
Breaking Biology News(10 mins):