Navigation Links
A mathematical theory proposed by Alan Turing in 1952 can explain the formation of fingers
Date:7/31/2014

Alan Turing, the British mathematician (1912-1954), is famous for a number of breakthroughs, which altered the course of the 20th century. In 1936 he published a paper, which laid the foundation of computer science, providing the first formal concept of a computer algorithm. He next played a pivotal role in the Second World War, designing the machines which cracked the German military codes, enabling the Allies to defeat the Nazis in several crucial battles. And in the late 1940's he turned his attention to artificial intelligence and proposed a challenge, now called the Turing test, which is still important to the field today.

His contribution to mathematical biology is less famous, but was no less profound. He published just one paper (1952), but it triggered a whole new field of mathematical enquiry into pattern formation. He discovered that a system with just 2 molecules could, at least in theory, create spotty or stripy patterns if they diffused and chemically interacted in just the right way.

His mathematical equations showed that starting from uniform condition (ie. a homogeneous distribution no pattern) they could spontaneously self-organise their concentrations into a repetitive spatial pattern. This theory has come to be accepted as an explanation of fairly simple patterns such as zebra stripes and even the ridges on sand dunes, but in embryology it has been resisted for decades as an explanation of how structures such as fingers are formed.

Now a group of researchers from the Multicellular Systems Biology lab at the CRG, led by ICREA Research Professor James Sharpe, has provided the long sought-for data which confirms that the fingers and toes are patterned by a Turing mechanism. "It complements their recent paper (Science 338:1476, 2012), which provided evidence that Hox genes and FGF signaling modulated a hypothetical Turing system. However, at that point the Turing molecules themselves were still not identified, and so this remained as the critical unsolved piece of the puzzle. The new study completes the picture, by revealing which signaling molecules act as the Turing system" says James Sharpe, co-author of the study.

The approach taken was that of systems biology combining experimental work with computational modelling. In this way, the two equal-first authors of the paper were able to iterate between the empirical and the theoretical: the lab-work of Jelena Raspopovic providing experimental data for the model, and the computer simulations of Luciano Marcon making predictions to be tested back in the lab.

By screening for the expression of many different genes, they found that two signalling pathways stood out as having the required activity patterns: BMPs and WNTs. They gradually constructed the minimal possible mathematical model compatible with all the data, and found that the two signalling pathways were linked through a non-diffusible molecule the transcription factor Sox9. Finally, they were able to make computational predictions about the effects of inhibiting these 2 pathways either individually, or in combination which predicted how the pattern of fingers should change. Strikingly, when the same experiments were done on small pieces of limb bud tissue cultured in a petri dish the same alterations in embryonic finger pattern were observed, confirming the computational prediction.

This result answers a long-standing question in the field, but it has consequences that go beyond the development of fingers. It addresses a more general debate about how the millions of cells in our bodies are able to dynamically arrange themselves into the correct 3D structures, for example in our kidneys, hearts and other organs. It challenges the dominance of an important traditional idea called positional information, proposed by Lewis Wolpert which states that cells know what to do because they all receive information about their "coordinates" in space (a bit like longitude and latitude on a world map). Today's publication highlights instead that local self-organising mechanisms may be much more important in organogenesis than previously thought.

Arriving at the correct understanding of multicellular organization is essential if we are to develop effective strategies for regenerative medicine, and one day to possibly engineer replacement tissues for various organs. In the shorter term, these results also explain why polydactyly the development of extra fingers or toes is such a common birth defect in humans: Turing systems are mathematically known to have slightly lower precision in regulating the number of "stripes" than alternative models.

At first glance, the question of how an embryo develops seems unrelated to the problems of computing and algorithms with which Turing is more commonly associated. In reality however, they were both expressions of his interest in how complex and clever biological "machines" arise in nature. In a sense, he sought the algorithms by which life builds itself. It is fitting that this study, which has confirmed Turing's 62 year-old theory on embryology, required the development of a serious computer model. It brings together two of his major life achievements into one satisfying result.


'/>"/>

Contact: Juan Manuel Sarasua
juan.sarasua@crg.eu
34-934-160-159
Center for Genomic Regulation
Source:Eurekalert  

Related biology technology :

1. Penn research helps lay out theory for metamaterials that act as an analog computer
2. Surprise: Viruses Can Cause Disease during Latent Phase; New Evidence Supports Microcompetition Theory
3. Enteroviruses Cause Type 1 Diabetes; New Studies Support Dr. Hanan Polansky’s Microcompetition Theory
4. Surprise: Flu Vaccine Prevents Heart Attacks and Strokes; New Study on Flu Vaccine Supports Dr. Hanan Polansky’s Microcompetition Theory
5. Scientific Proceedings Published, Challenging Conventional Neo-Darwinian Theory
6. Orlando Holistic Medicine and Wellness Center Releases Conspiracy Theory Thriller Book
7. 31st International Symposium on Lattice Field Theory
8. Major grant to investigate limits of quantum theory
9. Maths experts question key ecological theory
10. Rice professors nanotube theory confirmed
11. Microlin Bio Files Registration Statement for $25,000,000 Proposed Initial Public Offering
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A mathematical theory proposed by Alan Turing in 1952 can explain the formation of fingers
(Date:5/22/2016)... ... 2016 , ... Doctors in Rome say micronutrients found in certain foods have ... Mesothelioma has just posted an article on the new research. Click here to ... Sciences and Translational Medicine evaluated more than 150 studies on polyphenols in cancer for ...
(Date:5/20/2016)... ... May 20, 2016 , ... The recent recall by Costco and ... Food Safety News on May 12, 2016(1), demonstrates the need for faster and more ... Baltimore-based biotech firm, PathSensors, Inc. , PathSensor’s latest solution uses a ...
(Date:5/19/2016)... ... May 19, 2016 , ... ... (CRO) has welcomed Abu Siddiqui as Director, Large Molecule & Biomarker Bioanalysis. , ... vaccine and translational biomarker discovery studies for preclinical and clinical safety programs. “We’ve ...
(Date:5/18/2016)... ... May 18, 2016 , ... ... Camp at The University of Toledo. This two-day camp will take place annually ... explore the field of pharmaceutical sciences in preparation for a university academic program. ...
Breaking Biology Technology:
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
(Date:3/23/2016)... , March 23, 2016 ... Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung mit ... Inc. (NASDAQ: MESG ), ein ... dass das Unternehmen mit SpeechPro zusammenarbeitet, um ... der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im ...
Breaking Biology News(10 mins):