Navigation Links
A mathematical theory proposed by Alan Turing in 1952 can explain the formation of fingers

Alan Turing, the British mathematician (1912-1954), is famous for a number of breakthroughs, which altered the course of the 20th century. In 1936 he published a paper, which laid the foundation of computer science, providing the first formal concept of a computer algorithm. He next played a pivotal role in the Second World War, designing the machines which cracked the German military codes, enabling the Allies to defeat the Nazis in several crucial battles. And in the late 1940's he turned his attention to artificial intelligence and proposed a challenge, now called the Turing test, which is still important to the field today.

His contribution to mathematical biology is less famous, but was no less profound. He published just one paper (1952), but it triggered a whole new field of mathematical enquiry into pattern formation. He discovered that a system with just 2 molecules could, at least in theory, create spotty or stripy patterns if they diffused and chemically interacted in just the right way.

His mathematical equations showed that starting from uniform condition (ie. a homogeneous distribution no pattern) they could spontaneously self-organise their concentrations into a repetitive spatial pattern. This theory has come to be accepted as an explanation of fairly simple patterns such as zebra stripes and even the ridges on sand dunes, but in embryology it has been resisted for decades as an explanation of how structures such as fingers are formed.

Now a group of researchers from the Multicellular Systems Biology lab at the CRG, led by ICREA Research Professor James Sharpe, has provided the long sought-for data which confirms that the fingers and toes are patterned by a Turing mechanism. "It complements their recent paper (Science 338:1476, 2012), which provided evidence that Hox genes and FGF signaling modulated a hypothetical Turing system. However, at that point the Turing molecules themselves were still not identified, and so this remained as the critical unsolved piece of the puzzle. The new study completes the picture, by revealing which signaling molecules act as the Turing system" says James Sharpe, co-author of the study.

The approach taken was that of systems biology combining experimental work with computational modelling. In this way, the two equal-first authors of the paper were able to iterate between the empirical and the theoretical: the lab-work of Jelena Raspopovic providing experimental data for the model, and the computer simulations of Luciano Marcon making predictions to be tested back in the lab.

By screening for the expression of many different genes, they found that two signalling pathways stood out as having the required activity patterns: BMPs and WNTs. They gradually constructed the minimal possible mathematical model compatible with all the data, and found that the two signalling pathways were linked through a non-diffusible molecule the transcription factor Sox9. Finally, they were able to make computational predictions about the effects of inhibiting these 2 pathways either individually, or in combination which predicted how the pattern of fingers should change. Strikingly, when the same experiments were done on small pieces of limb bud tissue cultured in a petri dish the same alterations in embryonic finger pattern were observed, confirming the computational prediction.

This result answers a long-standing question in the field, but it has consequences that go beyond the development of fingers. It addresses a more general debate about how the millions of cells in our bodies are able to dynamically arrange themselves into the correct 3D structures, for example in our kidneys, hearts and other organs. It challenges the dominance of an important traditional idea called positional information, proposed by Lewis Wolpert which states that cells know what to do because they all receive information about their "coordinates" in space (a bit like longitude and latitude on a world map). Today's publication highlights instead that local self-organising mechanisms may be much more important in organogenesis than previously thought.

Arriving at the correct understanding of multicellular organization is essential if we are to develop effective strategies for regenerative medicine, and one day to possibly engineer replacement tissues for various organs. In the shorter term, these results also explain why polydactyly the development of extra fingers or toes is such a common birth defect in humans: Turing systems are mathematically known to have slightly lower precision in regulating the number of "stripes" than alternative models.

At first glance, the question of how an embryo develops seems unrelated to the problems of computing and algorithms with which Turing is more commonly associated. In reality however, they were both expressions of his interest in how complex and clever biological "machines" arise in nature. In a sense, he sought the algorithms by which life builds itself. It is fitting that this study, which has confirmed Turing's 62 year-old theory on embryology, required the development of a serious computer model. It brings together two of his major life achievements into one satisfying result.


Contact: Juan Manuel Sarasua
Center for Genomic Regulation

Related biology technology :

1. Penn research helps lay out theory for metamaterials that act as an analog computer
2. Surprise: Viruses Can Cause Disease during Latent Phase; New Evidence Supports Microcompetition Theory
3. Enteroviruses Cause Type 1 Diabetes; New Studies Support Dr. Hanan Polansky’s Microcompetition Theory
4. Surprise: Flu Vaccine Prevents Heart Attacks and Strokes; New Study on Flu Vaccine Supports Dr. Hanan Polansky’s Microcompetition Theory
5. Scientific Proceedings Published, Challenging Conventional Neo-Darwinian Theory
6. Orlando Holistic Medicine and Wellness Center Releases Conspiracy Theory Thriller Book
7. 31st International Symposium on Lattice Field Theory
8. Major grant to investigate limits of quantum theory
9. Maths experts question key ecological theory
10. Rice professors nanotube theory confirmed
11. Microlin Bio Files Registration Statement for $25,000,000 Proposed Initial Public Offering
Post Your Comments:
Related Image:
A mathematical theory proposed by Alan Turing in 1952 can explain the formation of fingers
(Date:11/24/2015)... DIEGO , Nov. 24, 2015 Halozyme Therapeutics, Inc. ... Healthcare Conference in New York on Wednesday, ... Helen Torley , president and CEO, will provide a corporate ... New York at 1:00 p.m. ET/10:00 a.m. PT ... and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide ... Carolina , today announced that the company has set a ... a 391% quarter on quarter growth posted for Q3 of 2014 ... and Mexico , with the establishment of ... December 2015. --> United Kingdom and ...
(Date:11/24/2015)... November 24, 2015 --> ... research report released by Transparency Market Research, the global ... a CAGR of 17.5% during the period between 2014 ... - Global Industry Analysis, Size, Volume, Share, Growth, Trends ... prenatal testing market to reach a valuation of US$2.38 ...
(Date:11/24/2015)... ... 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for ... Aregger to serve as Chief Operating Officer. , Having joined InSphero in ... and was promoted to Head of InSphero Diagnostics in 2014. There she ...
Breaking Biology Technology:
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
(Date:10/27/2015)... NEW YORK , Oct. 27, 2015 ... the major issues of concern for various industry verticals ... This is due to the growing demand for secure ... practices in various ,sectors, such as hacking of bank ... concerns for electronic equipment such as PC,s, laptops, and ...
(Date:10/26/2015)... PALO ALTO, Calif. and LAS ... – Nok Nok Labs , an innovator in ... FIDO Alliance , today announced the launch of its ... the first unified platform enabling organizations to use standards-based ... authentication. The Nok Nok S3 Authentication Suite is ideal ...
Breaking Biology News(10 mins):