Navigation Links
A first in integrated nanowire sensor circuitry
Date:8/4/2008

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley have created the world's first all-integrated sensor circuit based on nanowire arrays, combining light sensors and electronics made of different crystalline materials. Their method can be used to reproduce numerous such devices with high uniformity.

Nanostructures made with specific chemical, electronic, and other properties have a number of advantages over the same materials in bulk. For example, a nanowire is an ideal shape for a light detector; being virtually one-dimensional, practically "all surface," a nanowire is not only highly sensitive to light energy, but its electronic response is greatly enhanced as well.

To be practical, however, the photosensors must be integrated with electronics on the same chip. And the materials that make an ideal photosensor are necessarily different from those that make a good transistor.

"Our integration of arrays of nanowires that perform separate functions and are made of heterogeneous substances and doing this in a way that can be reproduced on a large scale in a controlled way is a first," says Ali Javey, who led the research team. Javey is a staff scientist in Berkeley Lab's Materials Sciences Division (MSD) and an assistant professor in the Electrical Engineering and Computer Sciences Department at UC Berkeley. He and his colleagues report their work in the August 1 edition of Proceedings of the National Academy of Sciences (PNAS).

Printed arrays

To grow a crystalline material on another crystalline material is difficult if the crystal lattices of the two materials are highly mismatched. Lattice matching is a particular challenge when more than one kind of material must be assembled on the same substrate. While many nanowire devices involving circuitry have been created over the years, these have required carefully selected substrates and specialized assembly devices that are virtually one of a kind.

"Our main objective is a route toward integrated nanowire arrays that we can produce on any substrate even paper! and to reproduce them uniformly on a large scale," Javey says. "To do that, over the past two years our group has developed methods of printing nanowire arrays. After first growing the nanowires on a donor substrate, we transfer them to any desired substrate, including paper or plastic."

The Javey group has devised two printing methods, contact and roller. The roller method involves growing nanowires on the surface of a cylinder and rolling it across the application substrate, like painting with a paint roller.

Contact printing involves growing nanowires on a flat substrate, inverting it, and pressing it onto the desired substrate. Then the nanowires are detached by sliding the growth substrate away, leaving them attached to the application substrate. Due to the lack of strong surface chemical interactions between nanowires, the process is self-limited to the transfer of only one layer of nanowires. The printed nanowires are highly aligned in the direction of the sliding.

"This has an added advantage," Javey says. "Nanowires grow sticking out in random directions; they look like a bad hair day." But directionally sliding the array off the growth substrate, Javey says, "is like combing the hair to make it stand up straight."

This is a particular advantage because nanowire electronics need to be aligned for uniform performance. In the case of nanowire photosensors, alignment is essential for consistent response both to the intensity (brightness) of light and to its polarization, since the one-dimensional wires respond differently to polarization depending on their orientation. Because of their random orientations, the polarization response of "bad hair" nanowire arrays varies widely.

For their integrated nanowire photosensor circuitry, the Javey group used cadmium selenide nanowires as visible-light sensors. For the electronics, nanowires with a germanium core and a silicon shell were the basis of field-effect transistors that would amplify the current produced by the photosensors in response to light by five orders of magnitude.

Integrating the circuit

"To fabricate the integrated circuitry, we had to position the two kinds of materials at precise locations on the receiver substrate," Javey says. "The pattern for the device was on a photoresist layer coated on the substrate. First we printed the cadmium selenide nanowires onto the substrate, then removed the photoresist with acetone, leaving the cadmium selenide nanowires exactly where we wanted them. We repeated the process for the germanium/silicon nanowires."

The photosensors and the electronics were now positioned on the substrate as such elements might be mapped onto a much larger integrated circuit. (In the test case, a standard silicon/silicon-oxide substrate was used.) The circuit was completed by depositing metal electrodes to connect the elements; the resulting matrix of all-nanowire circuits, which acted as pixels, was used for imaging.

Results of the Javey group's integrated nanowire circuit showed successful photoresponse in 80 percent of the circuits, with fairly small variations among them. Where circuits did fail, the causes were due to defects in fabrication of the circuit connections (10 percent), failure in photosensor printing (5 percent), or defective nanowires (5 percent). The relatively high yield of complex operational circuits proved the potential of the technology, with improvements readily achievable by optimizing nanowire synthesis and fabrication of the devices.

"In the future, we can foresee using a variety of different optical sensors to create nanoscale devices sensitive to multiple colors in high-resolution," says Javey. "And that's just the beginning. We contemplate printing nanowire sensor circuitry photosensors, chemical sensors, biosensors not on silicon but on paper or plastic tape. This could be used, easily and with instant results, where spills have occurred, or to test air quality, or to test for disease organisms almost any use for a sensor that you can imagine."


'/>"/>

Contact: Paul Preuss
paul_preuss@lbl.gov
510-486-6249
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology technology :

1. NanoLogix Inc. Announces Joint Development With CL Solutions and First Sales of Rapid Detection Kits
2. Monogram Biosciences Launches First Resistance Assay for HIV Integrase Inhibitors
3. The First Ever Transplantation World-Wide of Entire Arms at the "Klinikum rechts der Isar" in Munich
4. Confirmation of Strong Growth Over the First Half of 2008
5. Senesco Technologies Announces Successful Completion of First Milestone Related to Agreement with Bayer CropScience
6. Sanofi Pasteur Shipping First Doses of Influenza Vaccine for the 2008-2009 Season
7. Repligen Announces Conference Call of First Quarter Fiscal Year 2009 Results
8. Startup Nanotech Firm Books First Revenue From Large Chip Makers
9. First Program Addressing Aircraft Industry Sustainability Awards Accreditation To Five Global Companies
10. Mylan Launches First Generic Version of Antihypertensive Sular(R) ER in the United States
11. Caraco Pharmaceutical Laboratories, Ltd. Reports Results for the First Quarter of Fiscal Year 2009
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
A first in integrated nanowire sensor circuitry
(Date:6/23/2016)... June 23, 2016 A person commits a crime, ... scene to track the criminal down. An outbreak ... and Drug Administration (FDA) uses DNA evidence to track down ... Sound far-fetched? It,s not. The FDA has increasingly used ... investigations of foodborne illnesses. Put as simply as possible, whole ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a ... discoveries to the medical community, has closed its Series ... Matthew Nunez . "We have received a ... the capital we need to meet our current goals," ... provide us the runway to complete validation on the ...
(Date:6/23/2016)... Windsor, Connecticut (PRWEB) , ... June 23, 2016 ... ... will introduce a new line of intelligent tools designed, tuned and optimized exclusively ... place September 12–17 in Chicago. The result of a collaboration among several companies ...
Breaking Biology Technology:
(Date:3/31/2016)...   LegacyXChange, Inc. ... LegacyXChange is excited to release its first ... be launched online site for trading 100% guaranteed authentic ... also provide potential shareholders a sense of the value ... industry that is notorious for fraud. The video is ...
(Date:3/29/2016)... Florida , March 29, 2016 ... the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased ... in ink used in a variety of writing instruments, ... Buyers of originally created collectibles from athletes on LegacyXChange ... forensic analysis of the DNA. Bill ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):