Navigation Links
3-D photonic crystals will revolutionize telecommunications

Smaller, faster, more efficient: BASF research scientists are helping to revolutionize the future world of telecommunications with the aid of three-dimensional photonic crystals. In a three-year project, BASF is researching into the development of these crystals together with partners such as Hanover Laser Center, Thales Aerospace Division, Photon Design Ltd., the Technical University of Denmark and the Ecole Nationale Suprieure des Tlcommunications de Bretagne. By the end of 2008, the partners in the "NewTon" project expect to have developed the first functional components of this new technology. The long-term goal is to use three-dimensional photonic crystals as construction elements in telecommunication. Half of the project is being funded by the European Union.

Many times more information can be transmitted by light in the same time as has so far been possible with electricity. This is why telephone conversations, websites, photographs or music, for example, are now increasingly being transmitted in optical fibers. At present, however, this technology still has one drawback at the "network nodes". Indeed, at these nodes the routing of the information to the end-user is still done electrically, because no competitive, compact all-optical routing processor is yet available. This costs time and energy.

This is where the research activities of BASF and its partners come into the picture. They are developing a photonic crystal capable of reflecting only single colors of the white light depending on the observation angle. This phenomenon is known from nature: the splendid, shimmering colors on butterfly wings derive from the properties of photonic crystals.

"A structured three-dimensional photonic crystal could be the key component for a compact optical semiconductor or even for an all-optical routing processor", is the opinion of Dr. Reinhold J. Leyrer who is BASFs project leader in Polymer Research division. "Converting optical signals into electrical signals would then be superfluous". But the scientists first have to develop a stable, structured three-dimensional photonic crystal. And exactly this is the goal of the EU project "NewTon". This kind of basic research projects are especially suited to activate the European scientific competence, in order to strengthen the competitiveness of the whole region and of all involved industrial branches.

The production of these crystals is based on aqueous dispersions, a key competence of BASF. These dispersions contain polymer spherical particles measuring about 200 nanometers which, when the fluid evaporates, are forming a homogeneous protective film as it is expected with the paints. Depending from the chemical structure of the polymer particles they can also arrange themselves into a regular lattice structure, forming a crystal. The challenge facing the Ludwigshafen scientists is to enlarge the polymer particles contained in the dispersions to 1000 nanometers in such a way, that they all have exactly the same diameter. Using emulsion polymerization, they also apply an additional structure measuring less than 20 nanometers onto the polystyrene particles. The intention is to develop the most stable possible, large volume, three-dimensional crystal into which one of the project partners will then introduce the desired structure, the so called "defects".

Light at certain wavelengths then travels along these defects and even around sharp corners: the photonic crystal then acts as a photoconductor and takes the control over the propagation of light. The resulting structured crystal lattice is used in the further manufacturing process as a template, as the scientists call it. The spaces between the polymer spherical particles in the crystal lattice are filled with silicon. The researchers then "burn" the polymer particles out of the lattice. The result: a stable structure that is a mirror image of the original crystal. Crystals of this type could be used as components for an all-optical routing processor in telecommunications.

Manufacturers of components for telecommunication systems would benefit most from the use of photonic crystals. Since the crystals are smaller than electronic components, equipment would also become increasingly smaller and cheaper while simultaneously offering improved performance. Components and equipment based on photonic crystals would also be more resistant and less vulnerable to electromagnetic radiation. End users will gain from these advances. In the long term, transmitting information through electrical signals will restrict speed and transmission capacity in telecommunications. The long-term goal is therefore to develop a communications technology based entirely on transmitting information by light waves. The research activities of the "NewTon" project are laying the foundations for this scenario.


Contact: Melanie Steigelmann
BASF Aktiengesellschaft

Related biology technology :

1. Glycominds Joins Biomolecular Photonic (BMP) Consortium to Develop New Molecular Imaging Technique
2. Novel Angiogenic Drugs, Including a Future Blockbuster from Genzyme, Could Revolutionize Treatment of Peripheral Arterial Disease
Post Your Comments:
(Date:11/25/2015)... 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; ... and prospects remain fundamentally strong and highlights the ... recently received DSMB recommendation to continue the ZoptEC ... of the final interim efficacy and safety data ... in men with heavily pretreated castration- and Taxane-resistant ...
(Date:11/24/2015)... LUMPUR, Malaysia , Nov. 24, 2015 /PRNewswire/ ... global contract research organisation (CRO) market. The trend ... result in lower margins but higher volume share ... increased capacity and scale, however, margins in the ... Research Organisation (CRO) Market ( ), ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is an ... is bound to proteins, copper is also toxic to cells. With a $1.3 ... Institute (WPI) will conduct a systematic study of copper in the bacteria Pseudomonas ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader ... five states to develop and pitch their BIG ideas to improve health and wellness ... competing for votes to win the title of SAP's Teen Innovator, an all-expenses paid ...
Breaking Biology Technology:
(Date:10/29/2015)... 2015 Daon, a global leader in mobile ... a new version of its IdentityX Platform , ... America have already installed IdentityX v4.0 and ... FIDO UAF certified server component as an ... FIDO features. These customers include some of the largest ...
(Date:10/29/2015)... 2015  Connected health pioneer, Joseph C. Kvedar ... technology-enabled health and wellness, and the business opportunities that ... The Internet of Healthy Things . Long before ... existed, Dr. Kvedar, vice president, Connected Health, Partners HealthCare, ... moving care from the hospital or doctor,s office into ...
(Date:10/29/2015)... Today, LifeBEAM , a leader ... a global leader in technical performance sports clothing ... advanced bio-sensing technology. The hat will allow fitness ... biometrics to improve overall training performance. As a ... bring together the most advanced technology, extensive understanding ...
Breaking Biology News(10 mins):