Navigation Links
15,000 beams of light
Date:8/1/2010

One Chicago skyline is dazzling enough. Now imagine 15,000 of them.

A Northwestern University research team has done just that -- drawing 15,000 identical skylines with tiny beams of light using an innovative nanofabrication technology called beam-pen lithography (BPL).

Details of the new method, which could do for nanofabrication what the desktop printer has done for printing and information transfer, will be published Aug. 1 by the journal Nature Nanotechnology.

The Northwestern technology offers a means to rapidly and inexpensively make and prototype circuits, optoelectronics and medical diagnostics and promises many other applications in the electronics, photonics and life sciences industries.

"It's all about miniaturization," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and director of Northwestern's International Institute for Nanotechnology. "Rapid and large-scale transfer of information drives the world. But conventional micro- and nanofabrication tools for making structures are very expensive. We are trying to change that with this new approach to photolithography and nanopatterning."

Using beam-pen lithography, the researchers patterned 15,000 replicas of the Chicago skyline (featuring the Willis Tower and the John Hancock Center) simultaneously in about half an hour. Fifteen thousand tiny pens deposit the skylines over square centimeters of space. Conventional nanopatterning technologies, such as electron-beam lithography, allow one to make similarly small structures but are inherently low throughput and do not allow one to do large-area nanofabrication.

Each skyline pattern is made up of 182 dots, with each dot approximately 500 nanometers in diameter, like each pen tip. The time of light exposure for each dot was 20 seconds. The current method allows researchers to make structures as small as 150 nanometers, but refinements of the pen architecture likely will increase resolution to below 100 nanometers. (Although not reported in the paper, the researchers have created an array of 11 million pens in an area only a few centimeters square.)

Beam-pen lithography is the third type of "pen" in Mirkin's nanofabrication arsenal. He developed polymer-pen lithography (PPL) in 2008 and Dip-Pen Nanolithography (DPN) in 1999, both of which deliver chemical materials to a surface and have since been commercialized into research-grade nanofabrication tools that are now used in 23 countries around the world.

Like PPL, beam-pen lithography uses an array of tiny pens made of a polymer to print patterns over large areas with nanoscopic through macroscopic resolution. But instead of using an "ink" of molecules, BPL draws patterns using light on a light-sensitive material.

Each pen is in the shape of a pyramid, with the point as its tip. The researchers coat the pyramids with a very thin layer of gold and then remove a tiny amount of gold from each tip. The large open tops of the pyramids (the back side of the array) are exposed to light, and the gold-plated pyramids channel the light to the tips. A fine beam of light comes from each tip, where the gold was removed, exposing the light-sensitive material at each point. This allows the researchers to print patterns with great precision and ease.

"Another advantage is that we don't have to use all the pens at once -- we can shut some off and turn on others," said Mirkin, who also is professor of medicine and professor of materials science and engineering. "Because the tops of the pyramids are on the microscale, we can control each individual tip."

Beam-pen lithography could lead to the development of a desktop printer of sorts for nanofabrication, giving individual researchers a great deal of control of their work.

"Such an instrument would allow researchers at universities and in the electronics industry around the world to rapidly prototype -- and possibly produce -- high-resolution electronic devices and systems right in the lab," Mirkin said. "They want to test their patterns immediately, not have to wait for a third-party to produce prototypes, which is what happens now."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. HEALTHeCAREERS Network Pledges $15,000 to ASRT Foundation for Professional Healthcare Training
2. Cold atoms could replace hot gallium in focused ion beams
3. Nano-sized light mill drives micro-sized disk
4. World of lights in the microcosmos
5. Delcath Highlights Phase III Trial Results Presented at ASCO
6. Plant BioTech World Congress to Highlight Scientific Discoveries and Technologies Bringing New Hope to Feeding the World and Improving Lives
7. Study sheds light into the nature of embryonic stem cells
8. Sangamo BioSciences and Collaborators Present Data in Fifteen Presentations Highlighting Broad Therapeutic Applications of ZFP Technology
9. Cardium to Present at MDB Capital Groups 2010 Bright Lights Conference
10. ADVENTUS Bioremediation Technologies Highlighted at Battelle Symposium.
11. Honeywell Green Jet Fuel(TM) Powers U.S. Navy Green Hornet for Biofuels Certification Flight
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2016)... --> --> ... Point-Of-Care (POC) molecular diagnostics company, today announces that it has ... to be launched on the Company,s io® platform. By meeting ... is now cleared for sale within the European Union. ... the io® CT test signals a new era in ultra-rapid ...
(Date:2/5/2016)... DIEGO , Feb. 5, 2016 On ... region,s trusted information source for community, health and disaster ... Diego) will integrate to enhance care coordination and ... to the services they need and to better connect ... improve care.   San Diego ...
(Date:2/4/2016)... Feb. 4, 2016  Sangamo BioSciences, Inc. (NASDAQ: ... today that Edward Lanphier , Sangamo,s president and ... progress of Sangamo,s ZFP Therapeutic ® development programs ... 2:40 pm ET on Thursday, February 11, 2016, at ... Conference. The conference is being held in ...
(Date:2/4/2016)... and MENLO PARK, Calif. , Feb. ... ("DelMar" and the "Company"), a biopharmaceutical company focused on the ... it will present at the 18 th Annual ... 2016 at 10:00 a.m. EST in New York, ... president and CEO, will provide an update on the ongoing ...
Breaking Biology Technology:
(Date:2/3/2016)... 2016 --> ... "Automated Fingerprint Identification System Market by Component (Hardware and ... & Finance, Government, Healthcare, and Transportation) and Geography - ... is expected to be worth USD 8.49 Billion by ... and 2020. The transformation and technology evolution from the ...
(Date:2/2/2016)... YORK , Feb. 2, 2016 /PRNewswire/ ... facilities are primarily focused on medical screening ... measure point-of-care parameters. Wearable devices that facilitate ... user,s freedom of movement are being bolstered ... for human biomedical signal acquisition coupled with ...
(Date:2/2/2016)... YORK , Feb. 2, 2016 Technology Enhancements ... presents an analysis of the digital and computed radiography ... Malaysia , and Indonesia ... trends and market size, as well as regional market ... country and discusses market penetration and market attractiveness, both ...
Breaking Biology News(10 mins):