Navigation Links
15,000 beams of light
Date:8/1/2010

One Chicago skyline is dazzling enough. Now imagine 15,000 of them.

A Northwestern University research team has done just that -- drawing 15,000 identical skylines with tiny beams of light using an innovative nanofabrication technology called beam-pen lithography (BPL).

Details of the new method, which could do for nanofabrication what the desktop printer has done for printing and information transfer, will be published Aug. 1 by the journal Nature Nanotechnology.

The Northwestern technology offers a means to rapidly and inexpensively make and prototype circuits, optoelectronics and medical diagnostics and promises many other applications in the electronics, photonics and life sciences industries.

"It's all about miniaturization," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and director of Northwestern's International Institute for Nanotechnology. "Rapid and large-scale transfer of information drives the world. But conventional micro- and nanofabrication tools for making structures are very expensive. We are trying to change that with this new approach to photolithography and nanopatterning."

Using beam-pen lithography, the researchers patterned 15,000 replicas of the Chicago skyline (featuring the Willis Tower and the John Hancock Center) simultaneously in about half an hour. Fifteen thousand tiny pens deposit the skylines over square centimeters of space. Conventional nanopatterning technologies, such as electron-beam lithography, allow one to make similarly small structures but are inherently low throughput and do not allow one to do large-area nanofabrication.

Each skyline pattern is made up of 182 dots, with each dot approximately 500 nanometers in diameter, like each pen tip. The time of light exposure for each dot was 20 seconds. The current method allows researchers to make structures as small as 150 nanometers, but refinements of the pen architecture likely will increase resolution to below 100 nanometers. (Although not reported in the paper, the researchers have created an array of 11 million pens in an area only a few centimeters square.)

Beam-pen lithography is the third type of "pen" in Mirkin's nanofabrication arsenal. He developed polymer-pen lithography (PPL) in 2008 and Dip-Pen Nanolithography (DPN) in 1999, both of which deliver chemical materials to a surface and have since been commercialized into research-grade nanofabrication tools that are now used in 23 countries around the world.

Like PPL, beam-pen lithography uses an array of tiny pens made of a polymer to print patterns over large areas with nanoscopic through macroscopic resolution. But instead of using an "ink" of molecules, BPL draws patterns using light on a light-sensitive material.

Each pen is in the shape of a pyramid, with the point as its tip. The researchers coat the pyramids with a very thin layer of gold and then remove a tiny amount of gold from each tip. The large open tops of the pyramids (the back side of the array) are exposed to light, and the gold-plated pyramids channel the light to the tips. A fine beam of light comes from each tip, where the gold was removed, exposing the light-sensitive material at each point. This allows the researchers to print patterns with great precision and ease.

"Another advantage is that we don't have to use all the pens at once -- we can shut some off and turn on others," said Mirkin, who also is professor of medicine and professor of materials science and engineering. "Because the tops of the pyramids are on the microscale, we can control each individual tip."

Beam-pen lithography could lead to the development of a desktop printer of sorts for nanofabrication, giving individual researchers a great deal of control of their work.

"Such an instrument would allow researchers at universities and in the electronics industry around the world to rapidly prototype -- and possibly produce -- high-resolution electronic devices and systems right in the lab," Mirkin said. "They want to test their patterns immediately, not have to wait for a third-party to produce prototypes, which is what happens now."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. HEALTHeCAREERS Network Pledges $15,000 to ASRT Foundation for Professional Healthcare Training
2. Cold atoms could replace hot gallium in focused ion beams
3. Nano-sized light mill drives micro-sized disk
4. World of lights in the microcosmos
5. Delcath Highlights Phase III Trial Results Presented at ASCO
6. Plant BioTech World Congress to Highlight Scientific Discoveries and Technologies Bringing New Hope to Feeding the World and Improving Lives
7. Study sheds light into the nature of embryonic stem cells
8. Sangamo BioSciences and Collaborators Present Data in Fifteen Presentations Highlighting Broad Therapeutic Applications of ZFP Technology
9. Cardium to Present at MDB Capital Groups 2010 Bright Lights Conference
10. ADVENTUS Bioremediation Technologies Highlighted at Battelle Symposium.
11. Honeywell Green Jet Fuel(TM) Powers U.S. Navy Green Hornet for Biofuels Certification Flight
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/20/2017)... ... January 20, 2017 , ... The two newest companies to join ... patients. Vironika, a spin out from The Wistar Institute, and Sanguis, launched by a ... 3624 Market Street. , Vironika is developing a treatment for a chronic viral ...
(Date:1/20/2017)... ... January 20, 2017 , ... ... the next evolution in spinal fusion, the MISquito Percutaneous Pedicle Screw System ... competition, SpineFrontier is focused on technique driven product solutions that provide maximum ...
(Date:1/19/2017)... , Jan. 19, 2017 /PRNewswire -- WuXi AppTec, ... open-access capability and technology platform, today announced that ... biology focused preclinical drug discovery contract research organization ... become a wholly-owned subsidiary of WuXi, and will ... and providing greater services. The acquisition will further ...
(Date:1/19/2017)... GAITHERSBURG, Md. , Jan. 19, 2017 ... Inc., a privately-held immunotherapeutics company targeting infectious diseases, ... for the merger of PharmAthene and Altimmune in ... Venture Fund, HealthCap, Truffle Capital and Redmont Capital. ... diversified immunotherapeutics company with four clinical stage and ...
Breaking Biology Technology:
(Date:12/15/2016)... ... and Markets has announced the addition of the "Global Military Biometrics ... forecasts the global military biometrics market to grow at a CAGR of ... prepared based on an in-depth market analysis with inputs from industry experts. ... coming years. The report also includes a discussion of the key vendors ...
(Date:12/15/2016)... 15, 2016  There is much more to innovative ... the engine. Continental will demonstrate the intelligence of today,s ... . Through the combination of the keyless entry ... biometric elements, the international technology company is opening up ... authentication. "The integration of biometric elements brings ...
(Date:12/12/2016)...  Researchers at Trinity College, Dublin, are opening ... the material with Silly Putty. The mixture (known as ... to sense pulse, blood pressure, respiration, and even ... The research team,s findings were published Thursday ... http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):