Navigation Links
1 in, 2 out: Simulating more efficient solar cells
Date:1/28/2013

Using an exotic form of silicon could substantially improve the efficiency of solar cells, according to computer simulations by researchers at the University of California, Davis, and in Hungary. The work was published Jan. 25 in the journal Physical Review Letters.

Solar cells are based on the photoelectric effect: a photon, or particle of light, hits a silicon crystal and generates a negatively charged electron and a positively charged hole. Collecting those electron-hole pairs generates electric current.

Conventional solar cells generate one electron-hole pair per incoming photon, and have a theoretical maximum efficiency of 33 percent. One exciting new route to improved efficiency is to generate more than one electron-hole pair per photon, said Giulia Galli, professor of chemistry at UC Davis and co-author of the paper.

"This approach is capable of increasing the maximum efficiency to 42 percent, beyond any solar cell available today, which would be a pretty big deal," said lead author Stefan Wippermann, a postdoctoral researcher at UC Davis.

"In fact, there is reason to believe that if parabolic mirrors are used to focus the sunlight on such a new-paradigm solar cell, its efficiency could reach as high as 70 percent," Wippermann said.

Galli said that nanoparticles have a size of nanometers, typically just a few atoms across. Because of their small size, many of their properties are different from bulk materials. In particular, the probability of generating more than one electron-hole pair is much enhanced, driven by an effect called "quantum confinement." Experiments to explore this paradigm are being pursued by researchers at the Los Alamos National Laboratory, the National Renewable Energy Laboratory in Golden, Colo., as well as at UC Davis.

"But with nanoparticles of conventional silicon, the paradigm works only in ultraviolet light," Wippermann said. "This new approach will become useful only when it is demonstrated to work in visible sunlight."

The researchers simulated the behavior of a structure of silicon called silicon BC8, which is formed under high pressure but is stable at normal pressures, much as diamond is a form of carbon formed under high pressure but stable at normal pressures.

The computer simulations were run through the National Energy Research Scientific Supercomputing Center at the Lawrence Berkeley Laboratory, which granted the project 10 million hours of supercomputer time.

The simulations demonstrated that nanoparticles of silicon BC8 indeed generate multiple electron-hole pairs per photon even when exposed to visible light.

"This is more than an academic exercise. A Harvard-MIT paper showed that when normal silicon solar cells are irradiated with laser light, the energy the laser emits may create a local pressure high enough to form BC8 nanocrystals. Thus, laser or chemical pressure treatment of existing solar cells may turn them into these higher-efficiency cells," said co-author Gergely Zimanyi, professor of physics at UC Davis.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert  

Related biology technology :

1. Evolution inspires more efficient solar cell design
2. Molecular machine could hold key to more efficient manufacturing
3. UCLA engineers develop new energy-efficient computer memory using magnetic materials
4. Ben-Gurion University develops side-illuminated ultra-efficient solar cell designs
5. Highly efficient production of advanced biofuel by metabolically engineered microorganism
6. IBC 2012: New standard HEVC encodes films more efficiently
7. Increased productivity, not less energy use, results from more efficient lighting
8. Reno Efficient Sustainable Practices Selected to Provide Water and Energy Conservation Services To the County of San Diego
9. Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
10. Butamax Granted Core Patent for Making Biobutanol and Distillers Grains; Offers Producers Efficient, Low-Cost Production of Biobutanol
11. UCLA team develops highly efficient method for creating flexible, transparent electrodes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
1 in, 2 out: Simulating more efficient solar cells
(Date:1/19/2017)... 2017  ArmaGen, Inc., today announced that it ... chief executive officer, as well as a member ... ArmaGen more than 17 years of executive management ... biotherapeutics and pharmaceuticals. "Mathias is ... and skillset necessary to lead ArmaGen to its ...
(Date:1/19/2017)... Staten Island, NY (PRWEB) , ... January 19, 2017 , ... ... expand at an exponential rate. The tremendous growth is accounted to two main ... to the table and the expanding network of vendors supplying FireflySci products all around ...
(Date:1/19/2017)... , Jan. 18, 2017 Acupath Laboratories, Inc., ... the formation of an Executive Committee that will guide ... John Cucci , a 15-year veteran ... Director of Business Development to Chief Sales Officer ... Cucci served in senior sales leadership roles at several ...
(Date:1/18/2017)... 2017   Boston Biomedical , an industry leader ... cancer stemness pathways, will feature data from two clinical ... 2017 ASCO Gastrointestinal Cancers Symposium, held from January 19-21, ... Napabucasin is an orally-administered investigational agent designed to ... Cancer stem cells (CSCs) possess the property of stemness ...
Breaking Biology Technology:
(Date:12/12/2016)... , Dec. 12, 2016  Researchers at ... possibilities for graphene by combining the material with ... highly sensitive pressure detector able to sense pulse, ... a small spider.  The research ... can be read here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/8/2016)... ALAMEDA, Calif. , Dec. 8, 2016  Singulex, ... Single Molecule Counting technology, entered into a license and ... in serving science. The agreement provides Singulex access to ... Europe is used to diagnose ... the United States to aid in assessing ...
(Date:12/7/2016)... , December 7, 2016 BioCatch , the ... of its patent portfolio, which grew to over 40 granted and pending ... , , ... filed patent entitled " System, Device, and Method Estimating Force ... enables device makers to forego costly hardware components needed to estimate the ...
Breaking Biology News(10 mins):