Navigation Links
Biomass characterization technology research highlighted in Industrial Biotechnology journal
Date:8/29/2012

New Rochelle, NY, August 29, 2012--Biomass recalcitrance--the problem of how to break down complex plant-based cellulosic feedstock into sugars that can be fermented to produce sustainable biofuels and other renewable biobased productscan be overcome through improved methods of biomass characterization. IB IN-DEPTH, a collection of articles from leading research laboratories describing advanced tools and techniques for analyzing the chemistry, structure, and interaction of biomass components, is published in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc. The articles are available free online at the Industrial Biotechnology website.

The future capability to commercialize large-scale, economical, plant-based biofuels and bioproducts depends on the development of efficient and effective strategies to break down lignocellulosic biomass and to release the carbohydrates that can then be converted into these valuable end-products. Substantial progress is being made in solving the problems of biomass recalcitrance, and Guest Editor Brian Davison, PhD, Chief Scientist for Systems Biology and Biotechnology at Oak Ridge National Laboratory, Oak Ridge, TN, and Science Coordinator for the BioEnergy Science Center of the Department of Energy's Office of Biological and Environmental Research, and a member of the Editorial Board of Industrial Biotechnology, gathered leading researchers to share their work and perspectives.

The special research section includes two Reviews: "Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance" by Marcus Foston and Arthur Ragauskas, BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA; and "Neutron Technologies for Bioenergy Research" by Paul Langan and colleagues, Oak Ridge National Laboratory, University of Tennessee, Knoxville, and Georgia Institute of Technology. Also featured are Short Communications and Methods articles that present new or improved methods of biomass characterization, including strategies based on biomass accessibility to enzymes, glycomics, polysaccharide changes in plant cell walls, improvements to the Simon's stain technique, an updated method of mechanical stress testing, and a modification of atomic force microscopy.

"Much thanks to Dr. Brian Davison for pulling together this special issue of Industrial Biotechnology," says Larry Walker, PhD, Co-Editor-in-Chief and Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY. "The development of methods and approaches for characterizing biomass materials is an important step in driving biotechnology development from plant engineering to subsequent conversion to biofuels and bioproducts."


'/>"/>

Contact: Vicki Cohn
vcohn@liebertpub.com
914-740-2100 x2156
Mary Ann Liebert, Inc./Genetic Engineering News
Source:Eurekalert  

Related biology technology :

1. CTBE (Brazil) to Acquire Equipment for Biomass Pretreatment Research
2. CENER (Spain) to Acquire Equipment for Biomass Pretreatment Research
3. Breakthrough in nanotechnology
4. Bolder BioTechnology Announces Publication of Data Demonstrating Utility of the Companys Long-Acting IL-11 Analog to Prevent Renal Ischemia Reperfusion Injury
5. Bode Technology Offers First Rapid DNA Service Delivering a DNA Profile from Evidentiary Samples in Under 90 Minutes
6. POET And Agrivida Sign Technology Collaboration Joint Development Agreement
7. New technology delivers sustained release of drugs for up to 6 months
8. Astrix Technology Group Awarded Department of Homeland Security BioWatch Laboratory Staffing Contract
9. Global Marine Biotechnology Industry
10. Frost & Sullivan Recognizes MicroProtein Technologies for its Path-Breaking Production Technology for Recombinant Proteins in Bacteria
11. First Plant Genomics Yield Technology Progresses
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
 Biomass characterization technology research highlighted in Industrial Biotechnology journal
(Date:9/20/2017)... ... September 20, 2017 , ... RoviSys, ... solutions, announced today the opening of an office in Taipei, Taiwan. This new ... China region, while developing new relationships in the region. Located in the Neihu ...
(Date:9/19/2017)... , ... September 19, 2017 , ... VetStem Biopharma ’s CEO and founder, Dr. ... PhD in Riordan’s new book "Stem Cell Therapy: A Rising Tide". Dr. Harman and ... They bonded over an interest in the potential of stem cell therapy and a ...
(Date:9/19/2017)... ... September 19, 2017 , ... Avomeen Analytical Services, ... of its 2017 Science Student Award. The scholarship program is dedicated to helping ... service defray the costs of obtaining their science education. , Avomeen began the ...
(Date:9/18/2017)... ... 18, 2017 , ... Transportable biomass conversion facilities and the ... is the topic of a September 27 webinar hosted by the ... transportable biomass conversion facilities for producing biochar, briquettes, and torrefied wood, biomass supply ...
Breaking Biology Technology:
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/4/2017)... April 4, 2017   EyeLock LLC , a ... the United States Patent and Trademark Office (USPTO) has ... the linking of an iris image with a face ... represents the company,s 45 th issued patent. ... very timely given the multi-modal biometric capabilities that have ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
Breaking Biology News(10 mins):