Navigation Links
Zooming in on the protein-conducting channel

Researchers have gained the most detailed view yet of the heart of the translocon, a channel through which newly constructed proteins are inserted into the cell membrane. The process of transporting proteins across or into membranes is a critical function that occurs in every cell.

Howard Hughes Medical Institute investigator Joachim Frank at the Wadsworth Center and his colleagues reported their detailed study of the translocon's core, called the protein-conducting channel (PCC), in an article published in the November 17, 2005, issue of the journal Nature. Co-lead authors on the paper were Kakoli Mitra in Frank's laboratory and Christiane Schaffitzel of the Eidgenössische Technische Hochschule Hönggerberg in Switzerland, who is in the laboratory of the other senior author, Nenad Ban. Other co-authors were from the Scripps Research Institute and the State University of New York at Albany.

The researchers studied the PCC, which grabs newly made protein as it is extruded from the ribosome's protein synthesis machinery. The PCC then opens either a pore that is perpendicular or lateral to the cell membrane to feed the new protein either across or into the membrane.

For the studies, the Swiss researchers created a complex comprising the PCC from E. coli attached to a ribosome that contained a newly forming protein segment. The ribosome is the massive protein-RNA complex that constitutes the cell's protein-making machinery.

Mitra explored the structure of this PCC-ribosome complex using three-dimensional cryogenic electron microscopy (cryo-EM), as well as computational methods. Three-dimensional cryo-EM is one of the few techniques capable of visualizing large, dynamic molecules.

In preparing for cryo-EM, researchers immersed the PCC-containing complex in water and then abruptly froze it in supercold liquid ethane. The rapid freezing imprisoned the complex in vitreous ice, a glassy non-crystalline form of ice, thus preserving its na tive structure. Using an electron microscope with a low-intensity beam to avoid damaging the molecules, scientists then obtained images of thousands of captive protein complexes. Next, they used computer image analysis to produce detailed, three-dimensional maps of the complex in two different states from the low-contrast, noisy images produced by the electron microscope.

“What we have achieved is a huge jump in resolution of this complex,?said Frank. “Even so, this resolution would not allow us to study the complex in atomic detail, or even see individual helices.?He said the results from the cryo-EM analysis were informed by detailed x-ray crystallographic data on the PCC structure done by other researchers. In x-ray crystallography, an x-ray beam is directed through crystals of a target protein. As the x-rays pass through the crystal, they are diffracted. Researchers can then analyze the diffraction pattern to determine the atomic structure of the protein.

The analysis by Frank and his colleagues revealed that each channel consists of two PCC subunits joined in a clamshell arrangement. The cryo-EM data also revealed two different arrangements of the PCC -- one that was apparently in the functional, or “translocating?state, and one in a non-translocating state.

X-ray crystallography data from the lab of HHMI investigator Tom A. Rappaport suggested that the halves of the PCC clamshell were joined in a back-to-back arrangement. However, said Frank, x-ray crystallographic structures often do not represent the arrangements of proteins in their native functional state.

Thus, he and his colleagues applied a computational analytical method called “normal mode-based flexible fitting?(NMFF) to model how well the two possible channel structures could explain the structural data from cryo-EM. The NMFF method was developed and applied by co-authors Florence Tama and Charles Brooks of the Scripps Research Institute. The technique provides dynami c information on the multitude of vibrations and motions that complex molecules preferentially undergo.

NMFF analysis revealed that the cryo-EM data were best explained by a model in which the two PCC clamshells were joined in a “front-to-front?arrangement. This arrangement yielded significant insight into how the channel functions to translocate proteins across or into membranes, said Frank.

“Now that we have these new insights into the architecture of the PCC in its translocating, and possibly non-translocating state, we can explore the mechanisms of perpendicular versus lateral transport,?Frank said.


'"/>

Source:HHMI


Related biology news :

1. UBC researchers find stroke death channel
2. Scripps Research study reveals new activation mechanism for pain sensing channel
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/7/2016)... -- BioCatch , the global leader in behavioral biometrics, ... grew to over 40 granted and pending patents. ... , , The Company,s IP ... System, Device, and Method Estimating Force Applied to a Touch Surface, ... costly hardware components needed to estimate the force and pressure applied to ...
(Date:12/7/2016)... 2016   Veridium , a leader in ... new CEO James Stickland . Stickland, a ... experience, has served in senior executive roles for ... in expanding a pipeline of venture capital and ... recently served as managing director of U.K.-based fintech ...
(Date:12/6/2016)... Valencell , the leading innovator in performance biometric ... consecutive year of triple digit growth for its PerformTek ... 360 percent increase in companies who have acquired Valencell ... sales of its wrist and ear Benchmark™ sensor systems, ... hearables for fitness and healthcare applications. ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... to announce that Biohaven has issued today the following ... (PRWEB) Dec 9, 2016 - Biohaven Pharmaceutical ... that the U.S. Food and Drug Administration ("FDA") has ... drug candidate BHV-0223, an orally dissolving tablet being developed ...
(Date:12/8/2016)... Dec. 8, 2016  OncoSec Medical Incorporated ("OncoSec") ... DNA-based intratumoral cancer immunotherapies, today announced financial results ... "We are delivering on our commitment to ... ImmunoPulse® IL-12. We are pleased with the early ... trial, and we are focused on advancing our ...
(Date:12/8/2016)... Eurofins announces the appointment of Sean Murray , ... Inc. (ESI). Mr. Murray will bring valuable expertise ... experience in leading international business teams. As the National Division Leader, ... uphold Eurofins, status as the global leader in bio-analytical testing services. ... , , ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., ... development of the next generation neuro-thrombectomy system for the ... of Tudor G. Jovin, MD to join its Scientific ... as a strategic network of scientific and clinical experts ... development of the ANCD BRAIN ® to its ...
Breaking Biology Technology: