Navigation Links
X-Ray Beams And Fruit Fly 'Flight Simulator' Aid Scientists' View Of Muscle Power

What is the connection between a fly’s aerodynamic skill and human heart function? Using the nation’s most brilliant X-rays, located at the Advanced Photon Source at the U.S. Department of Energy’s Argonne National Laboratory, a cardiac molecular motors expert from the University of Vermont (UVM) and colleagues from the Illinois Institute of Technology (IIT) and Caltech performed research to answer that and other questions.

The research team, including David Maughan, Ph.D., research professor of molecular physiology and biophysics at the UVM College of Medicine, published their results in a report in the Jan. 20 issue of the British journal Nature.

To conduct their research, Maughan and his IIT and Caltech colleagues merged extremely bright X-ray beams and a “virtual-reality flight simulator?for flies, designed by Michael Dickinson of Caltech, to probe the muscles in a flying fruit fly and examine how it generates the extraordinary levels of power that result in flight.

The intense X-rays allowed the researchers to identify changes in the crystal-like arrangement of molecules responsible for generating the rapid contractions of the fly’s muscle with a resolution of 6/10,000th of a second. The flight simulator, which fools a tethered fly into thinking it is flying freely through the air, is necessary to produce a stable pattern of wing motion and enabled the team to capture X-ray images at different stages of muscle contraction. By combining the technologies, the researchers could reconstruct a ‘movie?of the molecular changes in the powerful muscles as they lengthen and shorten to drive the wings back and forth 200 times each second.

“At the molecular level, the insect’s flight muscle and a human heart are remarkably similar,?Maughan said. “We biologists have always been amazed by how hard these muscles work. Now we have taken advantage of the fruit fly’s small size and shone light right through the whole animal, illuminating the workin g muscles during flight and probing the molecular motions deep within the muscle cells.?/p>

These experiments uncovered previously unsuspected interactions of various proteins as the muscles stretch and contract. The results suggest a model for how these powerful biological motors turn “on?and “off?during the wingbeat.

“Small flying insects face an enormous task ?generating enough power to overcome gravity, air resistance and drag ?and they do this by beating their wings ferociously,?said Maughan. “We found out that timing is key, where certain molecules have to be positioned exactly with respect to others during each phase of the wing beat in order to produce the high power output.?/p>

The researchers note that the many similarities between insect muscle and other oscillatory muscles, including human cardiac muscle, mean that the research may be adaptable for other uses.

“Both insect flight and human heart muscles store energy during each beat that is later used to help flap the wings or expand the heart after contraction. We found that flying insects store much of the elastic energy in the protein filaments themselves, which minimizes the power costs,?Maughan said.

A previous publication by Maughan and Tom Irving of IIT demonstrated the feasibility of taking movies of molecular changes in live flies. UVM’s Instrument and Model Facility (IMF), directed by Tobey Clark, built a rotating shutter used in the earlier experiment. IMF scientists Carl Silver and Gill Gianetti fabricated the high-speed device.

“How the fly’s muscles turn off and on at 200 times a second has been a mystery that we now can solve in detail using these new technologies?Maughan said.

Maughan and his colleagues?research experiences with genetically malleable fruit flies has increased the potential for addressing much more specific questions about the roles of various protein components in muscle function using mutant or genetically-engineered flies. Currently, Maughan is collaborating with Jim Vigoreaux, Ph.D., associate professor of biology at UVM, and Doug Swank of Rensselaer Polytechnic Institute, to determine what parts of the flight muscle proteins are responsible for the high speed.

Collaborators on the X-ray project, in addition to Dickinson and Maughan, are Gerrie Farman, Tanya Bekyarova and David Gore of IIT, and Mark Frye of Caltech.


'"/>

Source:University Of Vermont


Related biology news :

1. Fruit fly studies open new window on cancer research
2. Fruit fly research set to revolutionize study of birth defects
3. How Fruitflies Know Its Time for Lunch
4. Fruit flys beating heart helps identify human heart disease genes
5. Fruit fly reveals a potential connection between dementia and cancer
6. Fruit fly dating game provides clues to our reproductive prowess
7. Fruit fly aggression studies have relevance to humans, animals
8. Psst! Coffee drinkers: Fruit flies have something to tell you about caffeine
9. Fruit fly study identifies gene mutation that regulates sensitivity to alcohol
10. Fruit flies and global warming -- Some like it hot
11. Fruit fly gene research may shed light on human disease processes
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/1/2016)... YORK , June 1, 2016 ... Technology in Election Administration and Criminal Identification to Boost ... to a recently released TechSci Research report, " Global ... By Region, Competition Forecast and Opportunities, 2011 - 2021", ... 24.8 billion by 2021, on account of growing security ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
(Date:6/23/2016)... MONICA, Calif. , June 23, 2016  The Prostate Cancer Foundation ... pioneer increasingly precise treatments and faster cures for prostate cancer. Members of the ... institutions across 15 countries. Read More About the Class ... ... ...
(Date:6/23/2016)... ... 2016 , ... Supplyframe, the Industry Network for electronics hardware ... . Located in Pasadena, Calif., the Design Lab’s mission is to bring together ... built and brought to market. , The Design Lab is Supplyframe’s physical representation ...
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
Breaking Biology Technology: