Navigation Links
Worms produce surprise insight into human fever

Give or take a few dozen trillions, a human adult has about 70 trillion cells. An adult Caenorhabditis elegans roundworm has exactly 959 cells.

Yet we have an awful lot in common, says Alejandro Aballay of Duke University, who has been exploring two “highly conserved? cell-signaling pathways for innate immunity shared by worms and humans. For one, we have a lot of common enemies, particularly soil-borne pathogens. C. elegans, of course, lives in the soil. Human populations merely ingest soil by the ton in our food, on our hands, and suspended in our drinking water.

Some of these basic pathways that set off the worm’s innate immune defenses have homologs—similar proteins in mammal cells, including ours. These conserved pathways are involved in many similar “effector?strategies against hostile bugs peristalsis, low gut pH, lytic enzymes, and antimicrobial peptides to prevent microbial colonization of the intestine.

In dissecting two conserved pathways required for C. elegans immunity to bacteria, Aballay found a wealth of data on innate immunity plus a surprising insight into another classic metazoan response to infection fever.

The first pathway was p38 MAPK/CED-3, which is also required for the activation of programmed cell death under certain stresses. The other was a heat shock transcription factor-1 (HSF-1) pathway, which is elicited by increased temperature independently of p38 MAPK/CED-3. Aballay identified genes in both pathways that encoded immunity effector molecules plus relevant signaling molecules and transcription factors. In fluorescently labeled transgenic worms, he mapped gene expression in the two target pathways as they came into direct contact with a small zoo of pathogenic microbes.

The big surprise was the discovery that the HSF-1 pathway was required for C. elegans immunity against Pseudomonas aeruginosa, Salmonella enterica, Yersinia pestis, and Enterococcus faecalis. It in dicated that HSF-1 is part of a broad, multi-pathogen defense pathway. And it also suggested something new about fever, says Aballay.

Fever is an ancient immune mechanism used by metazoans in response to microbial infections. Warm-blooded “homeotherms?like rats (and people) can increase their internal body temperature in response to infection, yet even cold-blooded “poikilotherms?like worms migrate toward warmer environments in response to infections. But the mechanism of fever as a response to infection is still largely unknown. The activation of the HSF-1 pathways by heat shock and its function in C. elegans immunity provides both a molecular explanation for the beneficial role of behavioral fevers in poikilotherms and a mechanism by which fever works in metazoans, says Aballay.

It also raises questions about the HSF-1 pathway in humans and whether drugs currently used to reduce fever in infected patients may make matters worse by preventing activation of the HSF-1 pathway. Aspirin and similar anti-inflammatory drugs, which reduce fever but also activate HSF-1 signaling, could offer the best of both worlds, says Aballay. He also points out that new drugs designed to activate HSF-1 are already in clinical trials for treating neurodegenerative diseases. “Our work opens the possibility of using co-inducers of HSF-1 to boost immunity to treat infectious diseases and immunodeficiencies,?says Aballay.


'"/>

Source:American Society for Cell Biology


Related biology news :

1. Research on Worms Yields Clues on Aging
2. Stealth Worms May Improve Insect Pest Control
3. Worms know bad food when they smell it
4. Some like it hot: Worms at deep-sea vents favor a fiery 45-55°C
5. Inexpensive, mass-produced genes core of synthetic biology advances at UH
6. Researchers devise way to mass-produce embryonic stem cells
7. Stem cells from brain transformed to produce insulin at Stanford
8. Anammox bacteria produce nitrogen gas in oceans snackbar
9. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
10. Organic farms produce same yields as conventional farms
11. Pollution-eating bacteria produce electricity
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... Rosalind™, the first-ever genomics analysis platform specifically designed for life science researchers ... honor of pioneering researcher Rosalind Franklin, who made a major contribution to ...
(Date:10/11/2017)... Md. (PRWEB) , ... October 11, 2017 , ... ... digital pathology, announced today it will be hosting a Webinar titled, “Pathology is ... Advanced Pathology Associates , on digital pathology adoption best practices and how Proscia ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
Breaking Biology Technology: