Navigation Links
When it comes to cell entry, being average has its advantages

When it comes to gaining entry into cells, size matters. A team from Brown University and the Max Planck Institute for Metals Research has created a model that explains how viruses and other bioparticles slip inside cells without a special protein coating called clathrin.

The secret, it seems, is to be average. Mid-sized nanomaterials ?about 27 to 30 nanometers in diameter, or about 1,000 times thinner than a human hair ?are optimal for cellular entry. In a research article to be posted this week in the online edition of the Proceedings of the National Academy of Sciences, the researchers note that this information is significant for developing gene and drug delivery tools as well as assessing the safety of nanotubes ?infinitesimal bits of carbon and other materials used in everything from cameras to clothing.

"If you know how viruses get into cells, you know how to better design drugs to keep them out," said L.B. Freund, professor of engineering at Brown. "Or if you do want molecules to get in ?those in medication, say ?knowing an optimal particle size for entry is also helpful.

"With nanotubes, we may be able to manufacture ones of a certain size to minimize chances that they'll enter and perhaps harm cells."

The type of cell entry the team studied is called receptor-mediated endocytosis.

Here's how it happens: A virus or other particle arrives at the cell membrane. Protein receptors on the membrane act like hooks, grabbing onto hooks, or ligands, on the particle, much like two pieces of Velcro. As more and more chemical hooks are recruited for the task, the membrane wraps around the particle until it is completely engulfed. This is how herpes and influenza viruses get inside cells.

The process is believed usually to involve clathrin, a protein that coats the invader to aid in the Velcro-like fastening. Yet scientists have shown that flu viruses can invade cells even without a clathrin coat. Along with Huajian Gao and Wendong Shi from Max Planck, Freund created a mathematical model that can account for this. Particle size plays a key role. According to the team's new model, cells take in viruses and other particles with a diameter of 27 to 30 nanometers more readily than ones that are larger or smaller. The faster the viruses are absorbed, the more rapidly they reproduce.

"Cells are simply optimizing the system," Freund explained. "If a particle is too big, there may not be enough receptors to bind to the virus. If it is too small, it takes too much energy to bend the cell membrane as it engulfs the invader."

When the team compared the implications of their theory to actual experimental observations with cells, they found broad agreement. "The theory is fundamentally sound ?a significant outcome," Freund said.


'"/>

Source:Brown University


Related biology news :

1. Growth in the sea comes down to a struggle for iron
2. Improved Outcomes Releases GeneLinker(TM) Gold and Platinum Version 4.6
3. BioMed Central welcomes the new National Institutes of Health public access policy
4. To sea or not to sea: When it comes to salmon sex, size sometimes doesnt matter
5. What comes first…the chicken, the egg, or the bad attitude?
6. Predicting successful outcomes in living-donor liver transplants
7. Signature of chromosome instability predicts cancer outcomes
8. Gene expression becomes heterogeneous with age in humans and rats
9. For diseases, when it comes to sharing a home, only close relatives will do
10. Giant deep-sea tubeworms meal ticket comes in as a skin infection
11. When it comes to gene transcription, random pauses aren’t quite so random, study finds
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/13/2017)... 13, 2017 Future of security: Biometric Face Matching software  ... ... DERMALOGs Face Matching enables to match face pictures against each other ... identify individuals. (PRNewsFoto/Dermalog Identification Systems) ... DERMALOG,s "Face Matching" is the fastest software for biometric Face Matching on the ...
(Date:3/7/2017)... SALT LAKE CITY , March 7, 2017 /PRNewswire/ ... solutions that help top global companies identify the best ... Leonard as Chief Sales Officer (CSO) and ... and Kucer,s appointments round out a seasoned executive team poised ... year and beyond, building on a year of record ...
(Date:3/2/2017)... LONDON , March 2, 2017 Who ... infringement lawsuits? Download the full report: https://www.reportbuyer.com/product/4313699/ ... ON THE FINGERPRINT SENSOR FIELD? Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... --  iSpecimen ®, the marketplace for human ... (DPS), a full-service anatomic pathology reference lab serving ... , has joined a program offered by iSpecimen ... to make human biospecimens and associated data available to ... in 2015 as a collaboration between iSpecimen and DHIN, ...
(Date:3/22/2017)... , March 22, 2017   Boston Biomedical , ... therapeutics designed to target cancer stemness pathways, today announced ... Andrews as Chief Executive Officer, effective April 24, ... Chiang J. Li , M.D., FACP, who has led ... ago. Under his leadership, Boston Biomedical has grown from ...
(Date:3/22/2017)... (PRWEB) , ... March 21, 2017 , ... ... of biologics. To acquire information on the desired increase and/or decrease in antibody-dependent ... industry for rapid N-glycosylation profiling of therapeutic antibodies. , To meet this ...
(Date:3/22/2017)... Wilmington, MA (PRWEB) , ... ... ... Technology Group ( WMFTG ) has unveiled its innovative Quantum peristaltic pump ... in peristaltic innovation, Quantum sets the new standard for high-pressure feed pumps ...
Breaking Biology Technology: