Navigation Links
Waking a sleeping virus

Editor: Yeah, I hate it too when there's no picture in this kind of article

A detailed structural picture of a molecule that plays a key role in activating the Epstein Barr Virus in human cells has now been obtained by researchers at the European Molecular Biology Laboratory (EMBL) and the Institut de Virologie Moléculaire et Structurale (IVMS), associated with the Université Joseph Fourier and the CNRS, in Grenoble.

Like Sleeping Beauty, the Epstein Barr Virus (EBV) slumbers in the cells of 90 per cent of the world's population, waiting to be awakened ?but it's no beauty. The study, which appears in this week's issue of the journal Molecular Cell, also reveals a potential weak point that could be targeted by antiviral drugs.

The molecule is a protein called ZEBRA, which the virus brings along as it infects human cells. ZEBRA is essential to switching the virus from its latent to its active state. "During an infection, EBV inserts its own DNA into the nucleus of human cells. This information contains the codes for about 100 genes," says Christoph Müller, head of an EMBL research lab in Grenoble. "Less than 10 genes are sufficient for the virus during its latent state, whereas all others are necessary to produce new viruses and to infect new host cells. Those have to be switched on, and ZEBRA functions as the switch which turns the cell into a factory to manufacture thousands of copies of the virus."

One result is the disease infectious mononucleosis ?called the "kissing disease" because EBV is transmitted in saliva ?whose symptoms resemble that of a cold. But in rare cases activation of the virus also leads to EBV associated cancers, especially in people with immune deficiencies.

Researchers have focused on ZEBRA because of its ability to activate so many genes. It does so by recognizing specific strings of chemical "letters" in the DNA, docking onto them and allowing the information to be read and transformed into ra w materials to make new viruses.

"A good strategy in fighting viruses is to block the activation of viral genes," says Patrice Morand, a physician at the University hospital and the IVMS. "The drugs we currently use against EBV work that way. The problem is that they only interrupt the late phase of the viral cycle. Since ZEBRA is essential to the first steps, waking the virus, blocking it would be much better."

To identify weak points of ZEBRA as potential drug targets Morand and Carlo Petosa from Müller's group created a high-resolution map of the protein's structure. Using the unique technology "platforms" that EMBL and the IVMS have set up in partnership with the neighbouring institutes, they obtained crystals of ZEBRA.

Examining these crystals with high-intensity X-rays at the European Synchrotron Radiation Facility (ESRF) in Grenoble, the scientists found that ZEBRA binds to DNA in a complex of two molecules. A detailed map of the interface between the two ZEBRA molecules revealed that one copy of ZEBRA plugs a large side chain into a deep pocket in the other. "This is an ideal type of structure to try to target with a drug," Petosa says. "If we can find a molecule to block access to the cavity, the copies wouldn't be able to bind to each other and dock onto DNA."

Morand and his colleagues carried out a close study of the pocket, which gave them good idea of what a "plug" would have to look like. The next step will be to screen likely molecules in hopes of finding an inhibitor. "We have been trying to develop an effective way to treat EBV infections for over 20 years, without major successes," Morand says. "Thanks to this partnership between medical research and structural biology that has grown on the Grenoble Polygone Scientifique campus, we are closer than ever before."


'"/>

Source:European Molecular Biology Laboratory


Related biology news :

1. Newly discovered protein an important tool for sleeping sickness research
2. Compound might defeat African sleeping sickness, clinical trial beginning this month
3. A large step forward in the fight against African sleeping sickness
4. Resistance and genetic sensitivity to sleeping sickness
5. New study suggests promising drug combinations for sleeping sickness
6. Live vaccines more effective against horse herpes virus
7. MUHC scientists describe genetic resistance to rampant virus
8. Studies clarify risk factors for mother-to-child transmission of hepatitis C virus
9. New possibilities for flu antiviral and vaccine research emerge from Spanish flu virus
10. Experimental vaccine protects nonhuman primates when given after exposure to Marburg virus
11. Enzyme inhibitors block replication of SARS virus
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
(Date:6/2/2016)... 2016 Perimeter Surveillance & Detection ... Physical Infrastructure, Support & Other Service  The ... offers comprehensive analysis of the global Border Security ... revenues of $17.98 billion in 2016. Now: ... leader in software and hardware technologies for advanced video ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is pleased ... received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of ... Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform ...
Breaking Biology Technology: