Navigation Links
'Virtual Patient' to simulate real-time organ motions for radiation therapy

With a $2 million grant from the National Institutes of Health (NIH), researchers from Rensselaer Polytechnic Institute are developing a physics-based virtual model that can simulate a patient's breathing in real time. When used in conjunction with existing 3-D models, adding the fourth dimension of time could significantly improve the accuracy and effectiveness of radiation treatment for lung and liver cancers.

X. George Xu, professor of nuclear and biomedical engineering, and Suvranu De, associate professor of mechanical engineering, have formed a multidisciplinary collaboration with clinical colleagues at the Cancer Therapy & Research Center in San Antonio, Texas, to develop the 4-D Visible Photographic Man (VIP-Man). This virtual model is an extension of Xu's ongoing project involving the 3-D VIP-Man, which is an advanced computer model that simulates in 3-D how radiation affects the organs and tissues in the human body.

"Live patients are not static beings, and a moving organ such as the lung or heart is a main concern in radiation treatment or imaging of tumors that are affected by such organ movement," Xu said. "In order to determine accurate and effective radiation dosages, doctors must consider such issues as the breathing function and air volume change that are affected by several physiological factors over the course of the radiation treatment."

Real-time simulations could allow doctors to spot the small fractions of time when the lungs, liver, kidneys, and eventually the heart, are stationary relative to the external radiation beams. These opportune moments during the actual therapy mean that doctors will have more confidence delivering the radiation to a moving tumor.

"The 4-D VIP-Man will allow doctors and medical physicists to accurately predict and monitor these anatomical changes to provide the most effective treatment possible at any given time," Xu said.

The fourth dimension of the VIP-Man is not easily achieved, according to Xu. Currently Xu and De are focusing their energy on respiratory function. "Using advanced computational tools, it is possible to simulate lung movement; however, not in real time," De said. "For effective radiation therapy, physics-based real-time performance offers the ultimate solution."

The key challenge in this project is to develop the algorithms that will make the virtual lungs and adjacent tissues move in real time according to realistic tissue biomechanical properties, De said.

Xu expects that the physics-based 4-D VIP-Man will eventually be used as an even more general anatomical modeling tool for the biomedical community to help patients with respiratory and cardiac diseases. At the same time, Xu will continue to work on the 3-D VIP-Man to create a "family" of virtual patients, ranging in ages and sizes, in collaboration with researchers worldwide through the Consortium of Computational Human Phantoms (, co-founded by Xu.

The collaboration with the group in Texas came about when Xu's former student, Chengyu Shi, a clinical medical physicist, and Martin Fuss, a radiation oncologist, expressed their interests to develop better radiation treatment by accounting for lung movement. Xu contacted De, who had been using the 3-D VIP-Man to simulate tissue deformation for surgical procedures, and the idea to take 3-D VIP-Man into the fourth dimension was born.

Xu has been working on the 3-D VIP-Man since 1997 using the original Visible Human Project dataset provided by the National Library of Medicine, also funded by several grants from NIH as well as a National Science Foundation CAREER grant. The new four-year, $2 million grant is funded by the National Library of Medicine, which is part of NIH.

Source:Rensselaer Polytechnic Institute

Related biology news :

1. Virtual autopsy helps identify drowning as cause of death
2. Whole-body MRI Takes Less Than 20 Min To Scan A Patients Entire Body For Cancer Spread To Bone
3. NYU researchers simulate molecular biological clock
4. Poplar trees redirect resources in response to simulated attack
5. Computational model simulates AZT metabolism in mitochondria
6. Surgeons with video game skill appear to perform better in simulated surgery skills course
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. LUCA technologies confirms real-time methane generation
9. Molecule by molecule, new assay shows real-time gene activity
10. Hopkins researchers develop new tool to watch real-time chemical activity in cells
11. Innovative movies show real-time immune-cell activity within tumors

Post Your Comments:

(Date:5/12/2016)... 2016 , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)... -- A new partnership announced today will help life ... a fraction of the time it takes today, ... insurance policies to consumers without requiring inconvenient and ... rapid testing (A1C, Cotinine and HIV) and higi,s ... pulse, BMI, and activity data) available at local ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm ... Mold) microbial test has received AOAC Research Institute approval 061601. , “This is ... last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The ...
(Date:6/23/2016)... June 23, 2016   EpiBiome , a precision ... million in debt financing from Silicon Valley Bank (SVB). ... and to advance its drug development efforts, as well ... "SVB has been an incredible strategic partner ... a traditional bank would provide," said Dr. Aeron ...
(Date:6/23/2016)... ... , ... In a new case report published today in STEM CELLS Translational ... lymphedema after being treated for breast cancer benefitted from an injection of stem cells ... this debilitating, frequent side effect of cancer treatment. , Lymphedema refers to ...
Breaking Biology Technology: