Navigation Links
Virginia Tech's System X supercomputer provides super tool for simulation of cell division

Virginia Tech researchers in computer science and biology have used the university's supercomputer, System X, to create models and algorithms that make it possible to simulate the cell cycle -- the processes leading to cell division. They have demonstrated that the new mathematical models and numerical algorithms provide powerful tools for studying the complex processes going on inside living cells.

Biologist John Tyson, who studies the cell cycle, is a leader in applying mathematical models in molecular cell biology. However, comparing the results of a mathematical model to experimental data is difficult because mathematical results are quantitative (numbers) while much experimental data is qualitative (trends). The mathematical biologist must figure out how to set the numerical values of the ‘parameters’ in the model equations in order to create an accurate representation of what is going on inside the cell. A simple example is the conversion between Fahrenheit and Celsius temperatures, said mathematician Layne Watson. "You could use several pairs of Fahrenheit and Celsius readings for the same temperature, and try to deduce the formula for converting between the temperature scales."

Previously, Tyson worked with simpler models whose parameters could be determined by trial and error, a process modelers call "parameter twiddling." But he and his coworker, Kathy Chen, wanted to characterize all the protein interactions regulating the cell cycle of budding yeast (the yeast cells familiar to bakers and brewers, and a favorite organism of molecular biologists, as well). "Such fundamental research on the cell cycle of budding yeast provides a basis for understanding the reproduction of human cells and is relevant to the causes and treatment of cancer, to tissue regeneration, and to the control of many pathogens," Tyson said.

For the budding yeast cell cycle, the experimental data consists of observed traits of 130 mutant yeast strains cons tructed by disabling and/or over-expressing the genes that encode the proteins of the regulatory network. The model has 143 parameters that need to be estimated from the data. "That is a big problem," said Watson. "You can't do that by hand. You can't even do it on a laptop. It takes a supercomputer."

In fact, it required more than 20,000 CPU hours on System X, a 2200 processor parallel computer, using two new algorithms, DIRECT (DIviding RECTangles) and MADS (Mesh Adaptive Direct Search), to estimate the 143 parameters.

"With a tool like this scientists can spend more time working on the model and less time twiddling parameters," said Tyson.

The research is due to appear in 2007 in the Journal of Global Optimization, in the article "Deterministic Parallel Global Parameter Estimation for a Model of the Budding Yeast Cell Cycle," by Thomas D. Panning, Layne T. Watson, Nicholas A. Allen, Katherine C. Chen, Clifford A. Shaffer, and John J. Tyson.

Panning, who is from Tulsa, Okla., received his master of science in computer science in May 2006 and is currently working as a programmer in Germantown, Md. Watson, of Blacksburg, is professor of computer science in the College of Engineering and professor of mathematics in the College of Science. Allen, who is from Columbia, Md., received his Ph.D. in computer science in November 2005 and is now with Microsoft. Chen, of Blacksburg, is a research scientist biological sciences in the College of Science. Shaffer, of Newport, is associate professor of computer science. Tyson, of Blacksburg, is a University Distinguished Professor of biological sciences.

The Virginia Tech computer science team created massively parallel versions of a deterministic global search algorithm, DIRECT, and a deterministic local search algorithm, MADS, to do the twiddling, and then combined the results. "A deterministic global search algorithm systematically explores the parameter space, finding good va lues," Watson said. "Then the local search algorithm improves the values from the starting points found by the global algorithm."

The parallel computer programs can now be used by others for similar problems. "The parameters found for the budding yeast cell cycle model are good until the next scientist invalidates them with new experimental data. That could be years from now or next week. That's the way science works," says Watson.
'"/>

Source:Virginia Tech


Related biology news :

1. Virginia Tech group adds tools to DNA-targeted anti-cancer drugs
2. Virginia Tech, Nanjing Institute researchers discover half-billion year-old fossils
3. Virginia Tech football player uses prototype cast
4. Virginia Tech scientists develop process for creating biocompatible fibers
5. Virginia Tech helping to develop higher quality, disease-resistant wheat varieties
6. Virginia Bioinformatics Institutes launches microbial database
7. Genes In The Interferon System Important In Systemic Lupus Erythematosus
8. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
9. Transport System Smuggles Medicines Into Brain
10. PANTHER Protein Classification System Database 5.0
11. Institute for Systems Biology Symposium Addresses Need for Better Computational Tools

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... , Dec 16, 2016 Research and Markets ... Market - Global Forecast to 2021" report to their offering. ... The biometric ... grow at a CAGR of 14.06% from 2016 to 2021. The ... is projected to reach 854.8 Million by 2021. The growth of ...
(Date:12/15/2016)... , Dec 15, 2016 ... Research and Markets has announced the ... their offering. The report forecasts the global military biometrics ... The report has been prepared based on an in-depth ... landscape and its growth prospects over the coming years. The report also ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):
(Date:1/13/2017)... ... January 13, 2017 , ... ... to offer its customers three new solutions for measurements where traditional cuvette applications ... if a customer has an oddly-shaped sample that would not fit into a ...
(Date:1/12/2017)... ... ... Huffman Engineering, Inc. , a leader in control systems integration, today ... office as a chemical engineer. In his new role, Beck will use his ... science manufacturing and water/wastewater industries. , Prior to joining Huffman Engineering, Beck served for ...
(Date:1/12/2017)... 2017 A new report published by Allied Market Research titled, ... Analysis and Industry Forecast, 2014-2022," projects that the global in vitro toxicity testing market ... CAGR of 15.07% during the forecast period. Continue Reading ... ... ...
(Date:1/11/2017)... ... January 11, 2017 , ... Ovation Fertility™ Genetics ... reliable preimplantation genetic screening (PGS). , “Our genetics and IVF teams are recognized ... Genetics Scientific Director Amy Jones, M.S., ELD (ABB) , who has worked ...
Breaking Biology Technology: