Navigation Links
Virginia Tech scientists develop process for creating biocompatible fibers

Scientists at Virginia Tech have developed a single-step process for creating nonwoven fibrous mats from a small organic molecule ?creating a new nanoscale material with potential applications where biocompatible materials are required, such as scaffolds for tissue growth and drug delivery.

The research will be presented in the Jan. 20 issue of Science, in the article, "Phospholipid Nonwoven Electrospun Membranes," by Matthew G. McKee, a recent Ph.D. graduate in chemical engineering from Virginia Tech now at P&G, current chemistry students John M. Layman and Matthew P. Cashion, and chemistry professor Timothy E. Long, all at Virginia Tech.

"Phospholipids, which are the main component of cell membranes in the human body or in an apple are exquisite in terms of their ability to self-organize," said Long.

The researchers fabricated this natural compound into a sub micron fiber ?100 times smaller than a human hair. "It is the first demonstration that electrostatic spinning, or electrospinning, a polymer processing technique, can be used with a small molecule to produce a fiber. "Clothing fibers such as polyesters and nylons are composed of large molecules, macromolecules," Long said. "Now, we are fabricating fibers from small molecules ?ones with a low molecular weight."

Under the microscope, the resulting mat shows a porous nonwoven structure.

The researchers used a commercial product, lecithin, a natural mixture of phospholipids and neutral lipids. The materials will spontaneously organize into cylindrical or worm-like strands to form membranes.

McKee studied this self-assembly and conducted rheological experiments to fundamentally understand the association of small molecules, then he determined that once phospholipids form an entangled network they can be treated similarly to higher weight molecules and electrospun. The size of the mats is limited only by the amount of material, such as lecithin.

"This re presents the synergy of electrospinning, the use of self-organizing molecules, and fundamental research to understand the behavior of such molecules," Long said. "Matt (McKee) did a terrific job of bringing fundamental learning to a potentially new family of fabrics and membranes."

Long said that the future opportunities are vast. "Our research group continues to fabricate molecules that self organize and can be electrospun. Potential applications include drug delivery, that is, a carrier and matrix to control the release of drugs."

Long's research group is working with Virginia-Maryland Regional College of Medicine researchers at Virginia Tech to develop a patch for drug delivery for horses. "We have not yet tested the specific biocompatibility (cytotoxicity) of our fibers, but we have not changed the chemical structure of the phospholipids."


'"/>

Source:Virginia Tech


Related biology news :

1. Virginia Tech group adds tools to DNA-targeted anti-cancer drugs
2. Virginia Tech, Nanjing Institute researchers discover half-billion year-old fossils
3. Virginia Tech football player uses prototype cast
4. Virginia Tech helping to develop higher quality, disease-resistant wheat varieties
5. Virginia Bioinformatics Institutes launches microbial database
6. Virginia Techs System X supercomputer provides super tool for simulation of cell division
7. Wisconsin scientists grow critical nerve cells
8. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
9. UAB scientists discover the origin of a mysterious physical force
10. Fox Chase Cancer Center scientists identify immune-system mutation
11. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
(Date:1/20/2016)... Jan. 20, 2016   MedNet Solutions , an ... spectrum of clinical research, is pleased to announce the ... achievements are the result of the company,s laser focus ... eClinical , it,s comprehensive, easy-to-use and highly affordable ... --> Key MedNet growth achievements in 2015 include: ...
(Date:1/13/2016)... , January 13, 2016 ... has published a new market report titled - Biometric Sensors ... and Forecast, 2015 - 2023. According to the report, the global ... and is anticipated to reach US$1,625.8 mn by 2023, ... 2023. In terms of volume, the biometric sensors market ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... and LONDON , February 9, 2016 ... bio tech replace paper and protect IP ... electronic laboratory notebook (ELN) will be rolled out in ... research and development (R&D) and protect valuable IP. Users will ... follow a specific researcher or experiment as part of the ...
(Date:2/8/2016)... Feb. 8, 2016 /PRNewswire/ - BIOREM Inc. (TSXV: BRM) ("Biorem" ... ten finalists for clean technology companies in the TSX Venture ... 10 companies listed on the TSX Venture Exchange, in each ... clean technology & life sciences, diversified industries and ... given to return on investment, market cap growth, trading volume ...
(Date:2/8/2016)... N.C. , Feb. 8, 2016 Novan, Inc. today ... Chairman of the Board of Directors of Novan. In addition, ... North Carolina . --> ... Company also announced that it received a total of $32.8 million ... 2015 from its private investor network originating throughout the Research Triangle ...
(Date:2/8/2016)... ... February 08, 2016 , ... Bulk food product inspection systems ... various stages of the production process. Despite frequently inspecting loose product prior to ... packaging such as sacks of dry powders. , Mettler-Toledo Product Inspection's brand-new white ...
Breaking Biology Technology: