Navigation Links
Virginia Tech scientists develop process for creating biocompatible fibers

Scientists at Virginia Tech have developed a single-step process for creating nonwoven fibrous mats from a small organic molecule ?creating a new nanoscale material with potential applications where biocompatible materials are required, such as scaffolds for tissue growth and drug delivery.

The research will be presented in the Jan. 20 issue of Science, in the article, "Phospholipid Nonwoven Electrospun Membranes," by Matthew G. McKee, a recent Ph.D. graduate in chemical engineering from Virginia Tech now at P&G, current chemistry students John M. Layman and Matthew P. Cashion, and chemistry professor Timothy E. Long, all at Virginia Tech.

"Phospholipids, which are the main component of cell membranes in the human body or in an apple are exquisite in terms of their ability to self-organize," said Long.

The researchers fabricated this natural compound into a sub micron fiber ?100 times smaller than a human hair. "It is the first demonstration that electrostatic spinning, or electrospinning, a polymer processing technique, can be used with a small molecule to produce a fiber. "Clothing fibers such as polyesters and nylons are composed of large molecules, macromolecules," Long said. "Now, we are fabricating fibers from small molecules ?ones with a low molecular weight."

Under the microscope, the resulting mat shows a porous nonwoven structure.

The researchers used a commercial product, lecithin, a natural mixture of phospholipids and neutral lipids. The materials will spontaneously organize into cylindrical or worm-like strands to form membranes.

McKee studied this self-assembly and conducted rheological experiments to fundamentally understand the association of small molecules, then he determined that once phospholipids form an entangled network they can be treated similarly to higher weight molecules and electrospun. The size of the mats is limited only by the amount of material, such as lecithin.

"This re presents the synergy of electrospinning, the use of self-organizing molecules, and fundamental research to understand the behavior of such molecules," Long said. "Matt (McKee) did a terrific job of bringing fundamental learning to a potentially new family of fabrics and membranes."

Long said that the future opportunities are vast. "Our research group continues to fabricate molecules that self organize and can be electrospun. Potential applications include drug delivery, that is, a carrier and matrix to control the release of drugs."

Long's research group is working with Virginia-Maryland Regional College of Medicine researchers at Virginia Tech to develop a patch for drug delivery for horses. "We have not yet tested the specific biocompatibility (cytotoxicity) of our fibers, but we have not changed the chemical structure of the phospholipids."


'"/>

Source:Virginia Tech


Related biology news :

1. Virginia Tech group adds tools to DNA-targeted anti-cancer drugs
2. Virginia Tech, Nanjing Institute researchers discover half-billion year-old fossils
3. Virginia Tech football player uses prototype cast
4. Virginia Tech helping to develop higher quality, disease-resistant wheat varieties
5. Virginia Bioinformatics Institutes launches microbial database
6. Virginia Techs System X supercomputer provides super tool for simulation of cell division
7. Wisconsin scientists grow critical nerve cells
8. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
9. UAB scientists discover the origin of a mysterious physical force
10. Fox Chase Cancer Center scientists identify immune-system mutation
11. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/16/2017)... 2017  Genos, a community for personal genetic ... received Laboratory Accreditation from the College of American ... laboratories that meet stringent requirements around quality, accuracy ... "Genos is committed to maintaining the ... honored to be receiving CAP accreditation," said ...
(Date:2/13/2017)... , Feb. 13, 2017  RSA Conference -- RSA, ... that is designed to enhance fraud detection and ... in the RSA Fraud & Risk Intelligence Suite. ... to leverage additional insights from internal and external ... better protect their customers from targeted cybercrime attacks. ...
(Date:2/10/2017)... , Feb 10, 2017 Research ... report "Personalized Medicine - Scientific and Commercial Aspects" ... ... medicine. Diagnosis is integrated with therapy for selection of treatment ... early detection and prevention of disease in modern medicine. Biochip/microarray ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... ... , ... March 22, 2017...Council for Agricultural Science and Technology, Ames, Iowa. ... innovation in smart, sustainable ways. Humans depend on plants for food, feed, fiber, and ... This paper is the first in a series that connects science and technology to ...
(Date:3/22/2017)... 2017  RXi Pharmaceuticals Corporation (NASDAQ: RXII), a ... significant unmet medical needs, today announced Alexey ... present at the 5th Annual Cancer BioPartnering & ... to present to and meet with thought leaders ... companies as well as institutional investors. This event ...
(Date:3/20/2017)... Diego, CA (PRWEB) , ... ... ... (EDCs) are substances that interfere with the ability of endogenous hormones to ... or inhibiting ligand binding activity (antagonists), EDCs produce adverse reproductive, neurological, proliferative, ...
(Date:3/20/2017)... (PRWEB) , ... March 20, 2017 , ... ... expensive and laborious sample preparation methods in order to reduce the impact on ... outside of the area of elemental analysis. , This presentation will discuss ...
Breaking Biology Technology: