Navigation Links
Using nanoparticles, in vivo gene therapy activates brain stem cells

Using customized nanoparticles that they developed, University at Buffalo scientists have for the first time delivered genes into the brains of living mice with an efficiency that is similar to, or better than, viral vectors and with no observable toxic effect, according to a paper published this week in Proceedings of the National Academy of Sciences.

The paper describes how the UB scientists used gene-nanoparticle complexes to activate adult brain stem/progenitor cells in vivo, demonstrating that it may be possible to "turn on" these otherwise idle cells as effective replacements for those destroyed by neurodegenerative diseases, such as Parkinson's.

In addition to delivering therapeutic genes to repair malfunctioning brain cells, the nanoparticles also provide promising models for studying the genetic mechanisms of brain disease.

"Until now, no non-viral technique has proven to be as effective as the viral vectors in vivo," said co-author Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics, SUNY Distinguished Professor in UB's Department of Chemistry and principal investigator of the institute's nanomedicine program. "This transition, from in vitro to in vivo, represents a dramatic leap forward in developing experimental, non-viral techniques to study brain biology and new therapies to address some of the most debilitating human diseases."

Viral vectors for gene therapy always carry with them the potential to revert back to wild-type, and some human trials have even resulted in fatalities.

As a result, new research focuses increasingly on non-viral vectors, which don't carry this risk.

Viral vectors can be produced only by specialists under rigidly controlled laboratory conditions. By contrast, the nanoparticles developed by the UB team can be synthesized easily in a matter of days by an experienced chemist.

The UB researchers make their nanoparticles from hy brid, organically modified silica (ORMOSIL), the structure and composition of which allow for the development of an extensive library of tailored nanoparticles to target gene therapies for different tissues and cell types.

A key advantage of the UB team's nanoparticle is its surface functionality, which allows it to be targeted to specific cells, explained Dhruba J. Bharali, Ph.D., a co-author on the paper and post-doctoral associate in the UB Department of Chemistry and UB's Institute for Lasers, Photonics and Biophotonics.

While they are easier and faster to produce, non-viral vectors typically suffer from very low expression and efficacy rates, especially in vivo.

"This is the first time that a non-viral vector has demonstrated efficacy in vivo at levels comparable to a viral vector," Bharali said.

In the UB experiments, targeted dopamine neurons -- which degenerate in Parkinson's disease, for example -- took up and expressed a fluorescent marker gene, demonstrating the ability of nanoparticle technology to deliver effectively genes to specific types of cells in the brain.

Using a new optical fiber in vivo imaging technique (CellviZio developed by Mauna Kea Technologies of Paris), the UB researchers were able to observe the brain cells expressing genes without having to sacrifice the animal. Then the UB researchers decided to go one step further, to see if they could not only observe, but also manipulate the behavior of brain cells.

Their finding that the nanoparticles successfully altered the development path of neural stem cells is especially intriguing because of scientific concerns that embryonic stem cells may not be able to function correctly since they have bypassed some of the developmental stages cells normally go through.

"What we did here instead was to reactivate adult stem cells located on the floor of brain ventricles, germinal cells that normally produce progeny that then die if they are not u sed," said Michal K. Stachowiak, Ph.D., co-author on the paper and associate professor of pathology and anatomical sciences in the UB School of Medicine and Biomedical Sciences. Stachowiak is in charge of in vivo studies at the UB Institute for Lasers, Photonics and Biophotonics.

"It's likely that these stem/progenitor cells will grow into healthy neurons," he said.

"In the future, this technology may make it possible to repair neurological damage caused by disease, trauma or stroke," said Earl J. Bergey, Ph.D., co-author and deputy director of biophotonics at the institute.

The group's next step is to conduct similar studies in larger animals.


Source:University at Buffalo

Related biology news :

1. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
2. Rush Physicians Using Gene Therapy For Heart Patients With Moderate To Severe Chest Pains Who Do Not Benefit From Other Treatments
3. Researchers Closer To Helping Hearing-Impaired Using Stem Cells
4. Using computers and DNA to count bacteria
5. Using the genomic shortcut to predict bacterial behavior
6. Using natures most primitive anti-viral defense system to find new approaches to cancer research
7. Using dental X-rays to detect osteoporosis
8. Using brain scans, researchers find evidence for a two-stage model of human perceptual learning
9. Using nanomagnets to enhance medical imaging
10. Adding Radiation Therapy To Chemotherapy Improves Survival In Patients With High-risk Breast Cancer
11. Columbia research lifts major hurdle to gene therapy for cancer
Post Your Comments:

(Date:11/10/2015)... 10, 2015  In this report, the ... of product, type, application, disease indication, and ... report are consumables, services, software. The type ... biomarkers, efficacy biomarkers, and validation biomarkers. The ... diagnostics development, drug discovery and development, personalized ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... , Oct. 29, 2015 Daon, a global ... it has released a new version of its ... North America have already installed ... also includes a FIDO UAF certified server component ... preparing to activate FIDO features. These customers include some ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf Association (USGA) today announced ... Section Award. Presented annually since 1961, the USGA Green Section Award recognizes an individual’s ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology ...
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
(Date:11/24/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) (the ... the Toronto Stock Exchange, confirms that as of the ... developments that would cause the recent movements in the ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged in ...
(Date:11/24/2015)... ... 2015 , ... This fall, global software solutions leader SAP and AdVenture Capital ... and pitch their BIG ideas to improve health and wellness in their schools. , ... win the title of SAP's Teen Innovator, an all-expenses paid trip to Super Bowl ...
Breaking Biology Technology: