Navigation Links
Using brain scans, researchers find evidence for a two-stage model of human perceptual learning

Using advanced brain imaging techniques, researchers at Georgetown University Medical Center have watched how humans use both lower and higher brain processes to learn novel tasks, an advance they say may help speed up the teaching of new skills as well as offer strategies to retrain people with perceptual deficits due to autism.

In the March 15 issue of Neuron, the research team provides the first human evidence for a two-stage model of how a person learns to place objects into categories ?discerning, for example, that a green apple, and not a green tennis ball, belongs to "food." They describe it as a complex interplay between neurons that process stimulus shape ("bottom-up") and more sophisticated brain areas that discriminate between these shapes to categorize and "label" that information ("top-down").

A human can't function without the ability to sort between objects and organize them in fluid ways, said the study's lead author, Maximilian Riesenhuber, Ph.D., the principal investigator for the Laboratory for Computational Cognitive Neuroscience. "We make sense of the world by learning to recognize objects as members of categories such as 'food,' 'friend,' or 'foe,' but it has not been clear how the human brain does this," he said.

The researchers theorized that a very simple yet efficient way of doing this kind of learning would be for the brain to first learn how objects vary in shape, and then, in a second stage, to learn which shapes go with which labels, allowing the brain to sort an object into different labeled "bins" when necessary. For example, a green apple and a green tennis ball are both green and round, but only an apple can be eaten and only a green tennis ball belongs to a sport.

In this study, the research team asked human volunteers to undertake a series of tasks presented to them on a computer screen. All of them involved cars that were generated with a computer graphics morphing system, allowing the researchers to generate thousands of cars with subtle shape differences. "In the beginning, all the cars looked very similar to the participants because they did not have any experience with them," said Riesenhuber. "It's like if a person had never seen faces before, they would all look similar at first."

In the first experiment, the participants looked at series of cars presented at different parts of the screen and performed simple position judgments on the images, while their brain activity was being measured using an advanced functional Magnetic Resonance Imaging (fMRI) technique that made it possible to more directly probe neuronal tuning than in previous studies. Investigators found that cars activated a particular region in participants' brains, the lateral occipital cortex, which had also been found by other studies to be important for object recognition.

Then the volunteers were given several hours of training using images of the cars. In these sessions, participants had to learn how to group the cars into two distinct categories. This was easy at first, Riesenhuber said, because the cars were obviously not alike, but then the researchers began to "tighten the screws" by making the two categories increasingly more similar.

"Over the course of the training, the participants got better at finer and finer category discriminations," Riesenhuber said. "This represents a crucial step in category learning where small differences in shape can have a big impact on category labels ?as in the tennis ball and apple example ?and where big differences in shape ?such as between an apple and a banana ?can have no impact on the label, such as when categorizing both as 'fruit'."

Now that the volunteers had learned how to categorize small shape changes, they were shown the cars from the first experiment while again being scanned, allowing the researchers to compare how training had enhanced the brain's ability to process car sha pes. They found again that cars selectively activated an area in lateral occipital cortex, but that now neurons in that area appeared to be finely tuned to small car shape differences.

In a third scan, the investigators finally asked subjects to categorize the same car images shown in the other scans. This time, two areas of the brain, the now familiar area in lateral occipital cortex as well as an area in lateral prefrontal cortex, were found to be active when processing the images. "The lateral prefrontal cortex is known to be the center of cognitive control," Riesenhuber said. "That is where the brain connects physical input to an action or response, deciding what task to do and how to respond to a stimulus."

In essence, fMRI was showing that both the higher and lower brain regions had worked together to learn a task, he said.

These findings might be helpful in understanding disorders that involve differences in the interaction of bottom-up and top-down information in the brain, such as autism or schizophrenia, Riesenhuber said. It also suggests how the learning of visual skills can be enhanced by directly monitoring neuronal activity. "This could be useful, for instance, to speed up learning to detect targets in unfamiliar imaging modalities, such as baggage X rays or radar images," he said.


'"/>

Source:Georgetown University Medical Center


Related biology news :

1. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
2. Rush Physicians Using Gene Therapy For Heart Patients With Moderate To Severe Chest Pains Who Do Not Benefit From Other Treatments
3. Researchers Closer To Helping Hearing-Impaired Using Stem Cells
4. Using nanoparticles, in vivo gene therapy activates brain stem cells
5. Using computers and DNA to count bacteria
6. Using the genomic shortcut to predict bacterial behavior
7. Using natures most primitive anti-viral defense system to find new approaches to cancer research
8. Using dental X-rays to detect osteoporosis
9. Using nanomagnets to enhance medical imaging
10. Controversial drug shown to act on brain protein to cut alcohol use
11. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/12/2016)... DALLAS , May 12, 2016 ... has just published the overview results from the Q1 ... of the recent wave was consumers, receptivity to a ... wearables data with a health insurance company. ... choose to share," says Michael LaColla , CEO ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/28/2016)... , April 28, 2016 First quarter ... (139.9), up 966% compared with the first quarter of 2015 ... totaled SEK 589.1 M (loss: 18.8) and the operating margin was ... (loss: 0.32) Cash flow from operations was SEK 249.9 ... 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. The ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers ... 5000 and the 6000i models are higher end machines that use the more unconventional ... spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci has ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS ... the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The company, ... proud to add Target to its list of well-respected retailers. This list includes ...
Breaking Biology Technology: