Navigation Links
Unraveling the mysteries of poison

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover how potassium channels and toxins combine and change in structure. This work could make it possible to develop medications for high blood pressure and many other diseases connected to potassium channel failure (Nature, April 13, 2006).

Our body's cells have membranes, and "ion channels" are embedded in them. Ion channels are special proteins which let only certain ions through the membrane. The channels build an electro-chemical gradient, allowing nerve and heart muscle cell signals to pass. The nerve or heart muscle cell is excited, and the ion channel structure changes, developing pores which let the ions through. Different channels are open to different specific ions; for example, potassium channels only allow potassium ions through. Poisonous animals use very specific toxins to target channels; the toxins block the channels and make it impossible for electric signals to move through the membrane ?often killing the cell.

These kind of interactions had not been well investigated at a structural level ?even though scientists had made great strides studying ion channels, using x-ray crystallography. Scientists from the Max Planck Institute for Biophysical Chemistry in Göttingen, working together with researchers from the Institute for Neural Signal Processing in Hamburg and French colleagues from the University of Marseille, combined a new method of solid-state NMR with particular protein synthesis procedures and looked at the example of poison from the north African scorpion Androctonus mauretanicus mauretanicus, to determine how bacterial potassium channels interact with toxins at an atomic level.

The researchers first examined the electrophysiological characteristics of the "poisoned" channel protein. The scientists "s pin-marked" some of them and investigated them with solid-state NMR. Spin-marked proteins contain carbon and nitrogen atoms with an intrinsic magentic moment (spin) which strengthens the NMR's signals. Looking at spectroscopic data before and after the toxin affected the channel, it turned out that the poison attaches to a particular area of the channel ?the pore region ?and changes the area's structure. The poison is thus only effective when it recognises a particular amino acid sequence in the ion channel. It is also important how intrinsically flexible the binding partner is; for a strong interaction to take place, the molecules of both partners have to be able to change their structures.

Applying these new spectroscopic methods, scientists are now better understanding the pharmacology and physiology of potassium channels. This could lead to better, more specific medications.


'"/>

Source:Max-Planck-Gesellschaft


Related biology news :

1. Unraveling a stomach cancer puzzle
2. Unraveling the viral mechanism
3. Unraveling where chimp and human brains diverge
4. ORNL, UC Berkeley unravel real-world clues to Earths mysteries
5. Tufts researchers shine light on firefly mysteries
6. How satellite tracking revealed the migratory mysteries of endangered Atlantic loggerhead turtles
7. Two central mysteries in genome inheritance solved at UCSD
8. Theory of oscillations may explain biological mysteries
9. Stanford snake venom study shows that certain cells may eliminate poison
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... a partnership to integrate the Onegini mobile security ... (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The ... enhanced security to access and transact across channels. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016 Houston Methodist Willowbrook Hospital ... Sports Association to serve as their official health ... Methodist Willowbrook will provide sponsorship support, athletic training ... association coaches, volunteers, athletes and families. ... Sports Association and to bring Houston Methodist quality ...
(Date:6/23/2016)... ... , ... Supplyframe, the Industry Network for electronics hardware design ... Located in Pasadena, Calif., the Design Lab’s mission is to bring together inventors ... and brought to market. , The Design Lab is Supplyframe’s physical representation of ...
(Date:6/23/2016)... , June 23, 2016 ... Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 Published ... the peer-reviewed journal from touchONCOLOGY, Andrew D ... cost of cancer care is placing an increasing ... of expensive biologic therapies. With the patents on ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
Breaking Biology Technology: