Navigation Links
Unraveling the mysteries of poison

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover how potassium channels and toxins combine and change in structure. This work could make it possible to develop medications for high blood pressure and many other diseases connected to potassium channel failure (Nature, April 13, 2006).

Our body's cells have membranes, and "ion channels" are embedded in them. Ion channels are special proteins which let only certain ions through the membrane. The channels build an electro-chemical gradient, allowing nerve and heart muscle cell signals to pass. The nerve or heart muscle cell is excited, and the ion channel structure changes, developing pores which let the ions through. Different channels are open to different specific ions; for example, potassium channels only allow potassium ions through. Poisonous animals use very specific toxins to target channels; the toxins block the channels and make it impossible for electric signals to move through the membrane ?often killing the cell.

These kind of interactions had not been well investigated at a structural level ?even though scientists had made great strides studying ion channels, using x-ray crystallography. Scientists from the Max Planck Institute for Biophysical Chemistry in Göttingen, working together with researchers from the Institute for Neural Signal Processing in Hamburg and French colleagues from the University of Marseille, combined a new method of solid-state NMR with particular protein synthesis procedures and looked at the example of poison from the north African scorpion Androctonus mauretanicus mauretanicus, to determine how bacterial potassium channels interact with toxins at an atomic level.

The researchers first examined the electrophysiological characteristics of the "poisoned" channel protein. The scientists "s pin-marked" some of them and investigated them with solid-state NMR. Spin-marked proteins contain carbon and nitrogen atoms with an intrinsic magentic moment (spin) which strengthens the NMR's signals. Looking at spectroscopic data before and after the toxin affected the channel, it turned out that the poison attaches to a particular area of the channel ?the pore region ?and changes the area's structure. The poison is thus only effective when it recognises a particular amino acid sequence in the ion channel. It is also important how intrinsically flexible the binding partner is; for a strong interaction to take place, the molecules of both partners have to be able to change their structures.

Applying these new spectroscopic methods, scientists are now better understanding the pharmacology and physiology of potassium channels. This could lead to better, more specific medications.


'"/>

Source:Max-Planck-Gesellschaft


Related biology news :

1. Unraveling a stomach cancer puzzle
2. Unraveling the viral mechanism
3. Unraveling where chimp and human brains diverge
4. ORNL, UC Berkeley unravel real-world clues to Earths mysteries
5. Tufts researchers shine light on firefly mysteries
6. How satellite tracking revealed the migratory mysteries of endangered Atlantic loggerhead turtles
7. Two central mysteries in genome inheritance solved at UCSD
8. Theory of oscillations may explain biological mysteries
9. Stanford snake venom study shows that certain cells may eliminate poison
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/20/2016)... 20, 2016   Valencell , the leading ... STMicroelectronics (NYSE: STM), a global semiconductor leader ... announced today the launch of a new, highly ... that includes ST,s compact SensorTile turnkey ... biometric sensor system. Together, SensorTile and Benchmark deliver ...
(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical device ... billion by 2021 from USD 5.31 billion in 2016, at a ... ... driven by technological advancements in medical devices, launch of a growing ... for wireless connectivity among healthcare providers, and increasing focus on physical ...
(Date:12/15/2016)... Advancements in biometrics will radically ... wellbeing (HWW), and security of vehicles by ... vehicles begin to feature fingerprint recognition, iris ... monitoring, brain wave monitoring, stress detection, fatigue ... detection. These will be driven by built-in, ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... WASHINGTON, DC , January 12, 2017 ... set up the world,s biggest facility for producing mycorrhizae. ... translated the nutrient tapping potential of mycorrhizae and developed ... ...      (Logo: http://mma.prnewswire.com/media/456932/PRNE_TERI_Logo.jpg) The TERI ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... RURO has enhanced the platform to accommodate increasingly complex and sophisticated deployments, ... searching, and more. In addition to these improvements, the latest release brings ...
(Date:1/11/2017)... ... January 11, 2017 , ... Photonics industry and ... , are commending the U.S. Congress and President Obama for their recognition of ... of the American Innovation and Competitiveness Act (AICA). , The language of the ...
(Date:1/11/2017)... ... January 11, 2017 , ... Microbial ... ground-breaking microbiome studies. Its most recent microbiome impact grant award has been made ... the effect of long-term use of oral antibiotics, prescribed for skin conditions, on ...
Breaking Biology Technology: