Navigation Links
University of Pittsburgh School of Medicine researchers develop 'off-the-shelf' vascular grafts

University of Pittsburgh School of Medicine investigators have engineered artificial blood vessels from muscle-derived stem cells (MDSCs) and a biodegradable polymer that exhibit extensive remodeling and remain free of blockages when grafted into rats. The results of their study, which is being presented at the Tissue Engineering and Regenerative Medicine International Society (TERMIS) North America Chapter meeting being held June 13 to 16 at the Westin Harbor Castle conference center in Toronto, has potentially significant implications for the treatment of heart and kidney diseases, where there is a critical need for new sources of blood vessels for vascular grafts.

The saphenous vein taken from a patient’s leg continues to be the most commonly used graft for coronary artery bypass grafting even though a significant percentage of vein grafts eventually fail. Arterial grafts are the preferred conduits because they are less prone to becoming obstructed. However, they are in very limited supply, as many patients require multiple grafts. Thus, there is an ongoing search for the ideal small-caliber arterial substitute for revascularization procedures.

The University of Pittsburgh team, led by David A. Vorp, Ph.D., associate professor of surgery and bioengineering and a faculty member of the McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, developed its vascular graft by “bulk seeding,” or spraying, MDSCs inside a biodegradable porous, tubular polyester urethane scaffold using a rotational vacuum seeding device.

After culturing their vascular constructs for seven days, the investigators then implanted them in the abdominal aortas of rats eight weeks before performing tests to determine how well the grafts had performed. The cell-seeded constructs showed a significantly higher blockage-free rate than unseeded controls (55 percent versus 0 percent). In addition, at eight weeks, there was an extensive r emodeling of the MDSC-seeded polymer by surrounding tissue, exhibiting tissue formation that is consistent with a mature artery.

According to Dr. Vorp, these findings in a rat demonstrate the feasibility of developing MDSC-seeded tissue-engineered vascular grafts for eventual human application. “The next step is to demonstrate the use of the tissue-engineered blood vessel in a larger animal model, such as a pig, which has a coagulation system more similar to that in humans. The advantage of our approach is that the graft could utilize the patient’s own stem cells and be ready for implantation almost immediately or, at most, after a relatively short culture period. This suggests that we could make these available ‘off-the-shelf,’ which is an essential element for clinical translation,” he explained.


'"/>

Source:University of Pittsburgh Schools of the Health Sciences


Related biology news :

1. University of Manchester makes made-to-measure skin and bones a reality using inkjet printers
2. New protein discovered by Hebrew University researchers
3. Next Generation Body Scanner Launched By The University Of Manchester
4. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
5. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
6. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
7. Carnegie Mellon University research reveals how cells process large genes
8. University of Delaware researchers develop cancer nanobomb
9. University of Arizona plant scientists to unravel maize genome
10. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
11. University of Utah to help build bionic arm

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona combed ... pleural mesothelioma. Their findings are the subject of a new article on the Surviving ... signposts in the blood, lung fluid or tissue of mesothelioma patients that can help ...
(Date:6/23/2016)... SPRING, Md. , June 23, 2016 A ... collected from the crime scene to track the criminal down. ... and the U.S. Food and Drug Administration (FDA) uses DNA ... Sound far-fetched? It,s not. The ... genome sequencing to support investigations of foodborne illnesses. Put as ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , a ... $1 million in debt financing from Silicon Valley Bank ... automation and to advance its drug development efforts, as ... facility. "SVB has been an incredible strategic ... services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
Breaking Biology Technology: