Navigation Links
University of Pittsburgh School of Medicine researchers develop 'off-the-shelf' vascular grafts

University of Pittsburgh School of Medicine investigators have engineered artificial blood vessels from muscle-derived stem cells (MDSCs) and a biodegradable polymer that exhibit extensive remodeling and remain free of blockages when grafted into rats. The results of their study, which is being presented at the Tissue Engineering and Regenerative Medicine International Society (TERMIS) North America Chapter meeting being held June 13 to 16 at the Westin Harbor Castle conference center in Toronto, has potentially significant implications for the treatment of heart and kidney diseases, where there is a critical need for new sources of blood vessels for vascular grafts.

The saphenous vein taken from a patient’s leg continues to be the most commonly used graft for coronary artery bypass grafting even though a significant percentage of vein grafts eventually fail. Arterial grafts are the preferred conduits because they are less prone to becoming obstructed. However, they are in very limited supply, as many patients require multiple grafts. Thus, there is an ongoing search for the ideal small-caliber arterial substitute for revascularization procedures.

The University of Pittsburgh team, led by David A. Vorp, Ph.D., associate professor of surgery and bioengineering and a faculty member of the McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, developed its vascular graft by “bulk seeding,” or spraying, MDSCs inside a biodegradable porous, tubular polyester urethane scaffold using a rotational vacuum seeding device.

After culturing their vascular constructs for seven days, the investigators then implanted them in the abdominal aortas of rats eight weeks before performing tests to determine how well the grafts had performed. The cell-seeded constructs showed a significantly higher blockage-free rate than unseeded controls (55 percent versus 0 percent). In addition, at eight weeks, there was an extensive r emodeling of the MDSC-seeded polymer by surrounding tissue, exhibiting tissue formation that is consistent with a mature artery.

According to Dr. Vorp, these findings in a rat demonstrate the feasibility of developing MDSC-seeded tissue-engineered vascular grafts for eventual human application. “The next step is to demonstrate the use of the tissue-engineered blood vessel in a larger animal model, such as a pig, which has a coagulation system more similar to that in humans. The advantage of our approach is that the graft could utilize the patient’s own stem cells and be ready for implantation almost immediately or, at most, after a relatively short culture period. This suggests that we could make these available ‘off-the-shelf,’ which is an essential element for clinical translation,” he explained.


Source:University of Pittsburgh Schools of the Health Sciences

Related biology news :

1. University of Manchester makes made-to-measure skin and bones a reality using inkjet printers
2. New protein discovered by Hebrew University researchers
3. Next Generation Body Scanner Launched By The University Of Manchester
4. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
5. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
6. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
7. Carnegie Mellon University research reveals how cells process large genes
8. University of Delaware researchers develop cancer nanobomb
9. University of Arizona plant scientists to unravel maize genome
10. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
11. University of Utah to help build bionic arm

Post Your Comments:

(Date:10/29/2015)... LA JOLLA, Calif. , Oct. 29, 2015 /PRNewswire-USNewswire/ ... released a new report titled, "DNA Synthesis and Biosecurity: ... how well the Department of Health and Human Services ... was issued in 2010. --> ... advances, but it also has the potential to pose ...
(Date:10/29/2015)... , Oct. 29, 2015  Rubicon Genomics, Inc., ... U.S. distribution of its DNA library preparation products, ... Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has ... preparation of NGS libraries for liquid biopsies--the analysis ... and prognostic applications in cancer and other conditions. ...
(Date:10/29/2015)... , October 29, 2015 ... biometric authentication company focused on the growing mobile ... wallet announces that StackCommerce, a leading marketplace to ... featuring the Wocket® smart wallet on StackSocial for ... ) ("NXT-ID" or the "Company"), a biometric authentication ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: ... that it has closed the sale of its global ... (GBT- NYSE Euronext) in a transaction valued at approximately ... facilities and a total of approximately 1,000 employees spread ... St. Louis area. This entire workforce ...
(Date:11/26/2015)... 2015 ... Research Laboratories, a leading independent and ... has formed a strategic partnership with ... Health for joint work on clinical ... ) , --> ,     ...
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 ... a biotechnology company developing bioengineered organ implants for life-threatening ... will present at the LD Micro "Main Event" investor ... PT. The presentation will be webcast live and posted ... also be available at the conference for one-on-one meetings ...
Breaking Biology Technology: