Navigation Links
University of Manchester makes made-to-measure skin and bones a reality using inkjet printers

Made-to-measure skin and bones, which could be used to treat burn victims or patients who have suffered severe disfigurements, may soon be a reality using inkjets which can print human cells. Scientists at The University of Manchester have developed the breakthrough technology which will allow tailor-made tissues and bones to be grown, simply by inputting their dimensions into a computer.

Professor Brian Derby, Head of the Ink-Jet Printing of Human Cells Project research team, said: "It is difficult for a surgeon to reconstruct any complex disfiguring of the face using CT scans, but with this technology we are able to build a fragment which will fit exactly. We can place cells in any designed position in order to grow tissue or bone." This breakthrough overcomes problems currently faced by scientists who are unable to grow large tissues and have limited control over the shape or size the tissue will grow to. It also allows more than one type of cell to be printed at once, which opens up the possibility of being able to create bone grafts. "Using conventional methods, you are only able to grow tissues which are a few millimetres thick, which is fine for growing artificial skin, but if you wanted to grow cartilage, for instance, it would be impossible," Professor Derby says. The key to the advance which Professor Derby and his team have made is the innovative way in which they are able to pre-determine the size and shape of the tissue or bone grown. Using the printers, they are able create 3-dimensional structures, known as 'tissue scaffolds'. The shape of the scaffold determines the shape of the tissue as it grows. The structures are created by printing very thin layers of a material repeatedly on top of each other until the structure is built. Each layer is just 10 microns thick (1,000 layers equals 1cm in thickness). This method allows larger tissues to be grown than previously possible. The reason for this is the way in which the cells are inserted into the structures. Before being fed into the printer, the cells are suspended in a nutrient rich liquid not dissimilar to ink, which ensures their survival. The cells are then fed into the printer and seeded directly into the structure as it is built. This avoids any 'sticking to the surface' which is a major disadvantage of current methods that infuse the cells into the structure after it has been built. "The problem is getting cells into the interior of these constructions as they naturally stick to the sides of whatever they are being inserted into. If they stick to the sides then this limits the number of cells which can grow into tissues, and the lack of penetration also limits their size. By using inkjet printing we are able to seed the cells into the construction as we build it, which means 'sticking' isn't a problem," says Professor Derby. Professor Derby believes the potential for this technology is huge: "You could print the scaffolding to create an organ in a day," he says.
'"/>

Source:University of Manchester


Related biology news :

1. New protein discovered by Hebrew University researchers
2. Next Generation Body Scanner Launched By The University Of Manchester
3. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
4. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
5. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
6. Carnegie Mellon University research reveals how cells process large genes
7. University of Delaware researchers develop cancer nanobomb
8. University of Arizona plant scientists to unravel maize genome
9. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
10. University of Utah to help build bionic arm
11. New University of Toronto research a pore excuse for engineering

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/6/2016)... DALLAS , Dec. 6, 2016 ... criminal justice technology solutions for public safety, investigation, ... (PEP) jointly announced today a five (5) year ... exclusive agreement to expand the rehabilitation and reentry ... PEP History Established in 2004, the Prison ...
(Date:12/2/2016)... 2016   SoftServe , a global digital ... an electrocardiogram (ECG) biosensor analysis system for continuous ... asset. The smart system ensures device-to-device communication between ... and mobile devices to easily ,recognize, and monitor ... vehicle technology advances, so too must the security ...
(Date:11/29/2016)... , Nov. 29, 2016 BioDirection, a privately ... products for the objective detection of concussion and other ... has successfully completed a meeting with the U.S. Food ... blood test Pre-Submission Package. During the meeting company representatives ... as a precursor to commencement of a planned pilot ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , December 8, 2016 ... Unternehmen für Molekulargenetik, erweitert seine Palette an anpassbaren ... NGS Custom FH Panels, das ein schnelles und ... ermöglicht. Das Panel bietet eine Erkennung von Einzel-Nukleotid-Variationen ... (CNV) mit einem einzigen kleinen Panel und ermöglicht ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... In response to client demand KbioBox developed a sophisticated “3 click” gene dditing ... are accessible from KBioBox’s new website, https://www.kbiobox.com/ and powered by ...
(Date:12/8/2016)... Iowa (PRWEB) , ... December 08, 2016 , ... This ... asynchronous approvals for biotech crops. The authors focus on the economic effects in countries ... global approval of new biotech crops and the resultant risk of low level presence ...
(Date:12/8/2016)... Fla. , Dec. 8, 2016  HedgePath ... company that discovers, develops and plans to commercialize ... its shares of common stock were approved for ... will begin trading on the OTCQX, effective today, ... qualify for the OTCQX market, companies must meet ...
Breaking Biology Technology: