Navigation Links
University of Manchester makes made-to-measure skin and bones a reality using inkjet printers

Made-to-measure skin and bones, which could be used to treat burn victims or patients who have suffered severe disfigurements, may soon be a reality using inkjets which can print human cells. Scientists at The University of Manchester have developed the breakthrough technology which will allow tailor-made tissues and bones to be grown, simply by inputting their dimensions into a computer.

Professor Brian Derby, Head of the Ink-Jet Printing of Human Cells Project research team, said: "It is difficult for a surgeon to reconstruct any complex disfiguring of the face using CT scans, but with this technology we are able to build a fragment which will fit exactly. We can place cells in any designed position in order to grow tissue or bone." This breakthrough overcomes problems currently faced by scientists who are unable to grow large tissues and have limited control over the shape or size the tissue will grow to. It also allows more than one type of cell to be printed at once, which opens up the possibility of being able to create bone grafts. "Using conventional methods, you are only able to grow tissues which are a few millimetres thick, which is fine for growing artificial skin, but if you wanted to grow cartilage, for instance, it would be impossible," Professor Derby says. The key to the advance which Professor Derby and his team have made is the innovative way in which they are able to pre-determine the size and shape of the tissue or bone grown. Using the printers, they are able create 3-dimensional structures, known as 'tissue scaffolds'. The shape of the scaffold determines the shape of the tissue as it grows. The structures are created by printing very thin layers of a material repeatedly on top of each other until the structure is built. Each layer is just 10 microns thick (1,000 layers equals 1cm in thickness). This method allows larger tissues to be grown than previously possible. The reason for this is the way in which the cells are inserted into the structures. Before being fed into the printer, the cells are suspended in a nutrient rich liquid not dissimilar to ink, which ensures their survival. The cells are then fed into the printer and seeded directly into the structure as it is built. This avoids any 'sticking to the surface' which is a major disadvantage of current methods that infuse the cells into the structure after it has been built. "The problem is getting cells into the interior of these constructions as they naturally stick to the sides of whatever they are being inserted into. If they stick to the sides then this limits the number of cells which can grow into tissues, and the lack of penetration also limits their size. By using inkjet printing we are able to seed the cells into the construction as we build it, which means 'sticking' isn't a problem," says Professor Derby. Professor Derby believes the potential for this technology is huge: "You could print the scaffolding to create an organ in a day," he says.
'"/>

Source:University of Manchester


Related biology news :

1. New protein discovered by Hebrew University researchers
2. Next Generation Body Scanner Launched By The University Of Manchester
3. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
4. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
5. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
6. Carnegie Mellon University research reveals how cells process large genes
7. University of Delaware researchers develop cancer nanobomb
8. University of Arizona plant scientists to unravel maize genome
9. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
10. University of Utah to help build bionic arm
11. New University of Toronto research a pore excuse for engineering

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2016)... -- The new GEZE SecuLogic access control ... system solution for all door components. It can be ... interface with integration authorization management system, and thus fulfills ... dimensions of the access control and the optimum integration ... considerable freedom of design with regard to the doors. ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
(Date:3/23/2016)... , March 23, 2016 ... Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung mit ... Inc. (NASDAQ: MESG ), ein ... dass das Unternehmen mit SpeechPro zusammenarbeitet, um ... der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... NC (PRWEB) , ... June 24, 2016 , ... Researchers ... the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are ... to read it now. , Diagnostic biomarkers are signposts in the blood, lung ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking ... Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity as ...
Breaking Biology Technology: