Navigation Links
University of Alberta researchers unravel intricate animal patterns

There is a scene in the animated blockbuster "Finding Nemo" when a school of fish makes a rapid string of complicated patterns—an arrow, a portrait of young Nemo and other intricate designs. While the detailed shapes might be a bit outlandish for fish to form, the premise isn’t far off. But how does a school of fish or a flock of birds know how to move from one configuration to another and then reorganize as a unit, without knowing what the entire group is doing? New research by University of Alberta scientists shows that one movement started by a single individual ripples through the entire group—a finding that helps unravel the mystery that has plagued scientists for years.

"It is known that there is a connection between the signals animals use to communicate with each other and their behaviour," said Raluca Eftimie, a graduate student in the U of A’s Centre for Mathematical Biology. "But until now, the connection between the complex spatial group patterns that we can see in nature and the different ways animals communicate, has not been stated explicitly."

For decades people have puzzled about how animals—fish schools, locust swarms, large flocks of birds--form large complex dynamical groups. It is clear individuals in the group are only communicating with nearby neighbours, but then the groups somehow emerge spontaneously with complicated patterns of their own. Eftimie and her co-authors—Dr. Mark Lewis and Dr. Gerda de Vries, also from the Centre for Mathematical Biology housed in the U of A’s Department of Mathematical and Statistical Sciences--used a one-dimensional mathematical model to describe the formation and movement of animal groups. The work is published in the prestigious journal, "Proceedings of the National Academy of Sciences."

"Every individual in the group is influenced by movement of the individuals in its neighbourhood," said de Vries. Conversely, the individual’s movement can influence the movement of the entire grou p.

"It turns out that the entire group can respond indirectly to a single individual, as each individual's movement response is a signal to its next neighbour," said Lewis, the Canada Research Chair in Mathematical Biology. "By this method, signals are passed quickly from individual to individual. So for example, one fish turns, causing the next one to turn, then the next one, and so on. This produces the complex collective behaviours--swarm formation, zig-zag group movements--that emerge from the ‘bottom up? simply based on interactions between neighbors."

Until Eftimie’s work, these complex emergent patterns could not be connected clearly to simple rules for the small scale communication between individuals.

People have had some success in proposing rather complex and detailed explanations for how specific species form into groups, says Lewis. "What Raluca's work does is show that very simple and straightforward sets of rules can produce the complex kinds of patterns seen in nature," says Lewis, also from the Department of Biological Sciences. "Her work has stripped out the unnecessary detail to the core elements of communication that give rise to the patterns found in large scale groups."

In particular, the researchers looked at the direction from which animals can receive signals from their neighbors. "For example, some species of birds use directional communication, and therefore, we may assume that in this case the behaviour of an individual will be influenced by the signals received from those con-specifics that face towards this individual," said Eftimie. "Based on these observations, we come up with some simple rules that can describe the different ways animals communicate. Then we incorporate these rules into the mathematical model, and check what kind of movement patterns we get."

The team came up with 10 complex patterns. Some are classical, such as stationary pulses, ripples or traveling trains but they also describe new patterns that have not been reported before such as zigzag pulses, feathers and traveling breathers.

This model doesn’t apply to specific species, says Eftimie. "However, we can think of those flocks of birds that fly in one direction, and then suddenly change direction 180 degrees, and compare this with the zigzagging type of pattern shown by the numerical simulations. Or we can think about the anti-predatory behaviour exhibited by some schools of fish--when a predator is nearby, the school contracts in a tight aggregation, to expand again when the predator is gone. And we can try to compare this behaviour with the breather pattern described in our paper."

The results of the model suggest that if we want to better understand the aggregations we see in nature, says Eftimie, we should take a look at how these animals communicate.

Source:University of Alberta

Related biology news :

1. University of Manchester makes made-to-measure skin and bones a reality using inkjet printers
2. New protein discovered by Hebrew University researchers
3. Next Generation Body Scanner Launched By The University Of Manchester
4. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
5. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
6. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
7. Carnegie Mellon University research reveals how cells process large genes
8. University of Delaware researchers develop cancer nanobomb
9. University of Arizona plant scientists to unravel maize genome
10. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
11. University of Utah to help build bionic arm

Post Your Comments:

(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
(Date:10/29/2015)... , Oct. 29, 2015  Rubicon Genomics, ... for U.S. distribution of its DNA library preparation ... and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq ... the preparation of NGS libraries for liquid biopsies--the ... diagnostic and prognostic applications in cancer and other ...
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading supplier ... models, has promoted Melanie Aregger to serve as Chief Operating Officer. , ... the management team and was promoted to Head of InSphero Diagnostics in ...
(Date:11/24/2015)... 2015 /CNW Telbec/ - ProMetic Life Sciences Inc. (TSX: PLI) ... Pierre Laurin , President and Chief Executive Officer of ... Piper Jaffray 27 th Annual Healthcare Conference to be ... 2015. st , at 8.50am (ET) and ... the day. The presentation will be available live via a ...
(Date:11/24/2015)... , Nov. 24, 2015 HemoShear ... on discovering drugs for metabolic disorders, announced today ... to its Board of Directors (BOD). Mr. Watkins ... of Human Genome Sciences (HGS), and also served ... Jim Powers , Chairman and CEO ...
(Date:11/24/2015)... YORK , November 24, 2015 ... in a European healthcare ... which the companies will work closely together in identifying European ... unmet medical need. The collaboration is underpinned by a significant ... fund. This is the first investment by Bristol-Myers Squibb in ...
Breaking Biology Technology: