Navigation Links
Unchecked DNA replication drives earliest steps toward cancer

Although not widely appreciated as a disease of the genes, cancer is always rooted in genetic errors or problems in gene regulation. Scientists have identified some of the first genetic triggers for cancer as mutations in specific oncogenes or tumor suppressor genes. Full-blown tumors and metastatic cancers, however, often exhibit many genetic mutations, sometimes dozens in a given tumor. An important scientific question, and one with significant clinical implications, has been what happens after the initial mutation that leads to dangerous later-stage cancers with multiple damaged genes.

In a new study, researchers at The Wistar Institute answer this vital question and suggest why mutations in a certain few genes, such as the p53 tumor suppressor gene, are found in so many different cancers. Mutations in p53 are found in the majority of human cancers, for example. The Wistar team's primary observation is that an initiating genetic error can push a cell to divide relentlessly, leading to conditions of DNA replication stress. This stress leads to random errors in the DNA duplication process ?breaks in the DNA that disrupt genes, for example. Unless halted, this error-generating process leads to an accumulation of mutant genes in the cell and, eventually, cancer.

A report on the new findings appears in the April 14 issue of Nature and is featured on the journal's cover.

"Cancer progression is driven by these mutations," explains Thanos D. Halazonetis, D.D.S., Ph.D., professor in the molecular and cellular oncogenesis program at Wistar and senior author on the Nature study. "Once you have the initiating event, you will have constant DNA breaks. These DNA breaks create more mutations, leading to tumor progression.

"Scientists have debated for a long time whether very early precancerous cells are genetically unstable, whether they have an unusually high mutation rate. What we show in this study is that they do have a higher mutation rate th an normal through this mechanism."

Fortunately, cells have an effective on-board damage control system, managed by the p53 gene. A protein called 53BP1, the critical role of which was reported by the same Wistar group in Nature last year, senses the DNA breaks caused by replication stress and activates the p53 pathway. That pathway shuts down the replication process, thus limiting further DNA damage. In some circumstances, p53 may even force the cell into apoptosis, or programmed death, as a way to protect against the cell developing into a tumor.

If the mutations occur in p53 itself, however, or the p53 pathway is unable to completely halt the process, further mutations will occur, leading the cell to become cancerous, with the number of mutations constantly growing. So, when p53 remains intact, it is often able to prevent cancers from developing. When it suffers damage itself, cancers commonly result, explaining why p53 mutations are so frequently seen in so many different cancers.

Halazonetis notes that the same techniques used in his experiments to monitor replications stress and DNA breaks could also be used as an effective diagnostic tool to identify precancerous cells.

"The presence of DNA breaks in precancerous and cancer cells may turn out to be the Achilles heel of cancer," Halazonetis says. "It might be possible to inhibit repair of these DNA breaks, in which case the cancer cells would die."

The lead authors on the Nature study are Vassilis G. Gorgoulis and Leandros-Vassilios F. Vassiliou at the University of Athens. In addition to senior author Halazonetis, the Wistar-based coauthors on the study are Monica Venere, Richard A. DiTullio, Jr., both also affiliated with the University of Pennsylvania, Akihiro Yoneta, and Meenhard Herlyn, D.V.M., professor and leader of the molecular and cellular oncogenesis program at Wistar. The remaining coauthors are Panagiotis Karakaidos, Panayotis Zacharatos, Athanassios Kotsinas , Nikolaos G. Kastrinakis, and Christos Kittas at the University of Athens; Triantafillos Liloglou at the University of Liverpool; Brynn Levy at Mount Sinai School of Medicine, and Dimitris Kletsas at the National Centre of Scientific Research "Demokritos" in Athens.


'"/>

Source:The Wistar Institute


Related biology news :

1. Novel mechanism for DNA replication discovered
2. UW scientists unravel critical genetic puzzle for flu virus replication
3. Enzyme inhibitors block replication of SARS virus
4. ANU scientists crack DNA replication mystery
5. U of S Vaccine and Infectious Disease Organization team discovers key step in flu virus replication
6. A first glimpse of the influenza replication machine
7. Common mechanisms for viral DNA replication
8. Climate change drives widespread amphibian extinctions
9. Habitat microstructure drives salamander metamorphosis
10. Mindless autopilot drives people to underestimate food decisions
11. Buildup of damaged DNA in cells drives aging
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/2/2016)... YORK , June 2, 2016   The Weather ... is announcing Watson Ads, an industry-first capability in which consumers ... by being able to ask questions via voice or text ... Marketers have long sought ... the consumer, that can be personal, relevant and valuable; and ...
(Date:5/24/2016)... patient care by providing unparalleled technology to leaders of the medical imaging industry.  As ... added to the range of products distributed by Ampronix. Photo - ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of ... higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... of the cuvette holder. , FireflySci has developed several Agilent flow cell product ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. ... test has received AOAC Research Institute approval 061601. , “This is another AOAC-RI ... stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... launch of the Supplyframe Design Lab . Located in Pasadena, Calif., the ... future of how hardware projects are designed, built and brought to market. , ...
Breaking Biology Technology: