Navigation Links
Unchecked DNA replication drives earliest steps toward cancer

Although not widely appreciated as a disease of the genes, cancer is always rooted in genetic errors or problems in gene regulation. Scientists have identified some of the first genetic triggers for cancer as mutations in specific oncogenes or tumor suppressor genes. Full-blown tumors and metastatic cancers, however, often exhibit many genetic mutations, sometimes dozens in a given tumor. An important scientific question, and one with significant clinical implications, has been what happens after the initial mutation that leads to dangerous later-stage cancers with multiple damaged genes.

In a new study, researchers at The Wistar Institute answer this vital question and suggest why mutations in a certain few genes, such as the p53 tumor suppressor gene, are found in so many different cancers. Mutations in p53 are found in the majority of human cancers, for example. The Wistar team's primary observation is that an initiating genetic error can push a cell to divide relentlessly, leading to conditions of DNA replication stress. This stress leads to random errors in the DNA duplication process ?breaks in the DNA that disrupt genes, for example. Unless halted, this error-generating process leads to an accumulation of mutant genes in the cell and, eventually, cancer.

A report on the new findings appears in the April 14 issue of Nature and is featured on the journal's cover.

"Cancer progression is driven by these mutations," explains Thanos D. Halazonetis, D.D.S., Ph.D., professor in the molecular and cellular oncogenesis program at Wistar and senior author on the Nature study. "Once you have the initiating event, you will have constant DNA breaks. These DNA breaks create more mutations, leading to tumor progression.

"Scientists have debated for a long time whether very early precancerous cells are genetically unstable, whether they have an unusually high mutation rate. What we show in this study is that they do have a higher mutation rate th an normal through this mechanism."

Fortunately, cells have an effective on-board damage control system, managed by the p53 gene. A protein called 53BP1, the critical role of which was reported by the same Wistar group in Nature last year, senses the DNA breaks caused by replication stress and activates the p53 pathway. That pathway shuts down the replication process, thus limiting further DNA damage. In some circumstances, p53 may even force the cell into apoptosis, or programmed death, as a way to protect against the cell developing into a tumor.

If the mutations occur in p53 itself, however, or the p53 pathway is unable to completely halt the process, further mutations will occur, leading the cell to become cancerous, with the number of mutations constantly growing. So, when p53 remains intact, it is often able to prevent cancers from developing. When it suffers damage itself, cancers commonly result, explaining why p53 mutations are so frequently seen in so many different cancers.

Halazonetis notes that the same techniques used in his experiments to monitor replications stress and DNA breaks could also be used as an effective diagnostic tool to identify precancerous cells.

"The presence of DNA breaks in precancerous and cancer cells may turn out to be the Achilles heel of cancer," Halazonetis says. "It might be possible to inhibit repair of these DNA breaks, in which case the cancer cells would die."

The lead authors on the Nature study are Vassilis G. Gorgoulis and Leandros-Vassilios F. Vassiliou at the University of Athens. In addition to senior author Halazonetis, the Wistar-based coauthors on the study are Monica Venere, Richard A. DiTullio, Jr., both also affiliated with the University of Pennsylvania, Akihiro Yoneta, and Meenhard Herlyn, D.V.M., professor and leader of the molecular and cellular oncogenesis program at Wistar. The remaining coauthors are Panagiotis Karakaidos, Panayotis Zacharatos, Athanassios Kotsinas , Nikolaos G. Kastrinakis, and Christos Kittas at the University of Athens; Triantafillos Liloglou at the University of Liverpool; Brynn Levy at Mount Sinai School of Medicine, and Dimitris Kletsas at the National Centre of Scientific Research "Demokritos" in Athens.


'"/>

Source:The Wistar Institute


Related biology news :

1. Novel mechanism for DNA replication discovered
2. UW scientists unravel critical genetic puzzle for flu virus replication
3. Enzyme inhibitors block replication of SARS virus
4. ANU scientists crack DNA replication mystery
5. U of S Vaccine and Infectious Disease Organization team discovers key step in flu virus replication
6. A first glimpse of the influenza replication machine
7. Common mechanisms for viral DNA replication
8. Climate change drives widespread amphibian extinctions
9. Habitat microstructure drives salamander metamorphosis
10. Mindless autopilot drives people to underestimate food decisions
11. Buildup of damaged DNA in cells drives aging
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/9/2016)... TURKU, Finland , June 9, 2016 ... French National Police deploy Teleste,s video security solution to ensure ... France during the major tournament ... and data communications systems and services, announced today that its ... Police Prefecture to back up public safety across ...
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
(Date:6/1/2016)... 1, 2016 Favorable Government Initiatives ... and Criminal Identification to Boost Global Biometrics System Market ... TechSci Research report, " Global Biometrics Market By ... and Opportunities, 2011 - 2021", the global biometrics market ... on account of growing security concerns across various end ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... Mosio, a leader in clinical research ... Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the ... tools, and strategies for clinical researchers. , “The landscape of how patients receive ...
(Date:6/23/2016)... , June 23, 2016 Houston Methodist ... the Cy-Fair Sports Association to serve as their ... agreement, Houston Methodist Willowbrook will provide sponsorship support, ... connectivity with association coaches, volunteers, athletes and families. ... the Cy-Fair Sports Association and to bring Houston ...
(Date:6/23/2016)... ... ... Supplyframe, the Industry Network for electronics hardware design and ... in Pasadena, Calif., the Design Lab’s mission is to bring together inventors and ... brought to market. , The Design Lab is Supplyframe’s physical representation of one ...
(Date:6/23/2016)... Andrew D Zelenetz ... Published recently in Oncology ... touchONCOLOGY, Andrew D Zelenetz , discusses the ... is placing an increasing burden on healthcare systems ... With the patents on many biologics expiring, interest ...
Breaking Biology Technology: