Navigation Links
UNC scientists solve mystery of how largest cellular motor protein powers movement

Scientists now understand how an important protein converts chemical energy to mechanical force, thus powering the process of cell division, thanks to a new structural model by University of North Carolina at Chapel Hill researchers.

The structural model helps solve a scientific mystery: how the protein dynein fuels itself to perform cellular functions vital to life. These functions include mitosis, or cell division into identical cells.

Dynein uses energy derived from ATP, or adenosine triphosphate, a molecule that is the principal form of energy for cells. The lack of a comprehensive and detailed molecular structure for dynein has kept scientists largely in the dark about how the protein converts ATP into mechanical force, said Dr. Nikolay V. Dokholyan, assistant professor of biochemistry and biophysics in the UNC School of Medicine.

Dokholyan said the dynein puzzle is similar to figuring out how auto engines make cars move.

“You have an engine up front that burns gas, but we didn’t know how the wheels are made to move.?

Dr. Timothy Elston, associate professor of pharmacology and director of the School of Medicine’s bioinformatics and computational biology program, explains further. “One of the unknowns about dynein was that the molecular site where chemical energy is initially released from ATP is very far away from where the mechanical force occurs. The mechanical force must be transmitted over a large distance.?

The study was published online Nov. 22 in the Proceedings of the National Academy of Sciences Early Edition. The work was supported in part by grants from the Muscular Dystrophy Association and the American Heart Association.

Using a variety of modeling techniques that allowed resolution at the level of atoms, Adrian W.R. Serohijos, a graduate student in Dokholyan’s lab and first author of the study, identified a flexible, spring-like “coiled-coil?region within dynein. It couples the motor protein to the distant ATP site.

“This dynein coiled-coil was completely missing from all previous studies. We saw it could allow a very rapid transduction of chemical energy into mechanical energy,?Dokholyan said.

Conversion to mechanical energy allows dynein to transport cellular structures such as mitochondria that perform specific jobs such as energy generation, protein production and cell maintenance. Dynein also helps force apart chromosomes during cell division.

“Dividing cells must separate their chromosomes and something has to generate the force to move chromosomes apart. Dynein provides the mechanical energy to do that,?Doholyan said.

While the research offers no immediate application to human disease, the authors noted that mutations of dynein have been implicated in some neurodegenerative and kidney disorders. Dokholyan pointed out that disruption of dynein’s interaction with a particular regulator protein causes defects in nerve cell transmission and mimics the symptoms of people with amyotrophic lateral sclerosis (ALS).


'"/>

Source:University of North Carolina School of Medicine


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/20/2016)... , June 20, 2016 Securus ... justice technology solutions for public safety, investigation, corrections ... the prisons involved, it has secured the final ... (DOC) facilities for Managed Access Systems (MAS) installed. ... additional facilities to be installed by October, 2016. ...
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
(Date:6/9/2016)... TURKU, Finland , June 9, 2016 ... French National Police deploy Teleste,s video security solution to ensure ... France during the major tournament ... and data communications systems and services, announced today that its ... Police Prefecture to back up public safety across ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division ... tuned and optimized exclusively for Okuma CNC machining centers at The International Manufacturing ... collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics and ...
Breaking Biology Technology: