Navigation Links
UNC scientists discover new role for protein as fundamental inhibitor of cell movement

Scientists from the University of North Carolina at Chapel Hill School of Medicine and the UNC Lineberger Comprehensive Cancer Center have identified a protein that may inhibit cellular movement, or migration.

The protein, CIB1, or calcium and integrin-binding protein 1, was originally discovered at UNC in 1997 as a blood platelet protein that may play a role in clotting.

Cell migration belongs to the most rudimentary of cellular functions that allow processes such as fetal development, new blood vessel formation and wound healing to occur in humans. Increased tumor cell migration also is one of the hallmarks of highly aggressive, rapidly spreading cancer tumors.

The study appears in the August issue of The Journal of Cell Biology.

The study indicates that CIB1 inhibits cell migration by binding to and activating a protein called PAK1, or p21-activated kinase, in cancer cells. When CIB1 activates PAK1, this kinase then inhibits cell migration by adding a phosphate group to a host of other proteins in the cell.

Thus, the study suggests that CIB1 may be a likely target for new drug development aimed at decreasing tumor metastasis, or spread, throughout the body.

"I was ecstatic to see these results and to discover that it also regulates the fundamental process of cell migration," said Dr. Tina Leisner, associate professor of pharmacology at UNC and the study's lead author. "CIB1 plays a prominent role in the activation of PAK1 and potentially may be another important player in the regulation of this kinase," she added.

The other activators of PAK1 include relatives of the notorious Ras family of tumor promoters, the GTPases Rac and Cdc42. CIB1 activation of PAK1, however, is different from these GTPases.

"CIB1 activates PAK1 before Rac and Cdc42," said Dr. Leslie V. Parise, UNC professor of pharmacology, member of UNC Lineberger and the study's senior author.

"The time course of PAK1 activation nev er synched up with the time course of Rac and Cdc42 activation; now we know why ?it was probably CIB1 that was activating PAK1 and not the Ras relatives."

In illustrating the role that CIB1 plays in cell migration and PAK1 activation, the authors used a new method known as RNAi or RNA interference to knock down or reduce CIB1 expression in various cell lines. Cells with less CIB1 had less PAK1 activation and migrated faster. The authors also showed that the more CIB1 these cells had, the less likely they were to move.

The key to understanding CIB1's multifunctional role in humans is that the protein has a relative that behaves in a very similar multifunctional fashion: calmodulin. This was one of the first regulatory proteins ever discovered.

"CIB1 is very similar to the protein calmodulin, which binds to a host of other proteins and regulates numerous cell functions, the fact that CIB1 and calmodulin are so similar could suggest that CIB1 may play multiple roles in multiple cell types."

"Our study of CIB1 is still very much in its early days, but its role in migration is already very clear," Parise said.


'"/>

Source:University of North Carolina School of Medicine


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
(Date:3/22/2016)... PROVO and SANDY, Utah ... Ontario (NSO), which operates the highest sample volume laboratory ... and Tute Genomics and UNIConnect, leaders in clinical sequencing ... announced the launch of a project to establish the ... panel. NSO has been contracted by ...
(Date:3/15/2016)... -- Yissum Research Development Company of the Hebrew ... Hebrew University, announced today the formation of Neteera ... human biological indicators. Neteera Technologies has completed its first ... ... emissions from sweat ducts, enables reliable and speedy biometric ...
Breaking Biology News(10 mins):
(Date:5/23/2016)... and LONDON , May 23, 2016 ... Frontage Boost Efficiency by 40% - Frontage Implement a ... Frontage Enforce Quality, Compliance and Traceability Within the Bioanalytical lab ... in the United States and ... be deployed across its laboratory facilities. In addition to serving as ...
(Date:5/23/2016)... (PRWEB) , ... May 23, 2016 , ... ... interest organization focused on molecular nanotechnology, announced the winners for the 2015 Foresight ... physicist Richard Feynman, are given in two categories, one for experiment and the ...
(Date:5/20/2016)... ... May 20, 2016 , ... The leading Regenerative Veterinary Medicine ... experienced veterinary clients have treated over 100 of their own patients with the VetStem ... the highest level of care for their patients. , The veterinarians are Dr ...
(Date:5/20/2016)... ... , ... Korean researchers say Manumycin A triggers apoptosis, or natural cell death, ... the disease. Surviving Mesothelioma has just posted an article on the new study. ... their mesothelioma study on the fact the Manumycin A, a derivative of Streptomyces parvulus, ...
Breaking Biology Technology: