Navigation Links
UNC scientists discover new role for protein as fundamental inhibitor of cell movement

Scientists from the University of North Carolina at Chapel Hill School of Medicine and the UNC Lineberger Comprehensive Cancer Center have identified a protein that may inhibit cellular movement, or migration.

The protein, CIB1, or calcium and integrin-binding protein 1, was originally discovered at UNC in 1997 as a blood platelet protein that may play a role in clotting.

Cell migration belongs to the most rudimentary of cellular functions that allow processes such as fetal development, new blood vessel formation and wound healing to occur in humans. Increased tumor cell migration also is one of the hallmarks of highly aggressive, rapidly spreading cancer tumors.

The study appears in the August issue of The Journal of Cell Biology.

The study indicates that CIB1 inhibits cell migration by binding to and activating a protein called PAK1, or p21-activated kinase, in cancer cells. When CIB1 activates PAK1, this kinase then inhibits cell migration by adding a phosphate group to a host of other proteins in the cell.

Thus, the study suggests that CIB1 may be a likely target for new drug development aimed at decreasing tumor metastasis, or spread, throughout the body.

"I was ecstatic to see these results and to discover that it also regulates the fundamental process of cell migration," said Dr. Tina Leisner, associate professor of pharmacology at UNC and the study's lead author. "CIB1 plays a prominent role in the activation of PAK1 and potentially may be another important player in the regulation of this kinase," she added.

The other activators of PAK1 include relatives of the notorious Ras family of tumor promoters, the GTPases Rac and Cdc42. CIB1 activation of PAK1, however, is different from these GTPases.

"CIB1 activates PAK1 before Rac and Cdc42," said Dr. Leslie V. Parise, UNC professor of pharmacology, member of UNC Lineberger and the study's senior author.

"The time course of PAK1 activation nev er synched up with the time course of Rac and Cdc42 activation; now we know why ?it was probably CIB1 that was activating PAK1 and not the Ras relatives."

In illustrating the role that CIB1 plays in cell migration and PAK1 activation, the authors used a new method known as RNAi or RNA interference to knock down or reduce CIB1 expression in various cell lines. Cells with less CIB1 had less PAK1 activation and migrated faster. The authors also showed that the more CIB1 these cells had, the less likely they were to move.

The key to understanding CIB1's multifunctional role in humans is that the protein has a relative that behaves in a very similar multifunctional fashion: calmodulin. This was one of the first regulatory proteins ever discovered.

"CIB1 is very similar to the protein calmodulin, which binds to a host of other proteins and regulates numerous cell functions, the fact that CIB1 and calmodulin are so similar could suggest that CIB1 may play multiple roles in multiple cell types."

"Our study of CIB1 is still very much in its early days, but its role in migration is already very clear," Parise said.


Source:University of North Carolina School of Medicine

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:

(Date:11/17/2015)... November 17, 2015 Paris ... 2015.  --> Paris , qui ... DERMALOG, le leader de l,innovation biométrique, a inventé ... passeports et empreintes sur la même surface de balayage. ... et l,autre pour les empreintes digitales. Désormais, un seul ...
(Date:11/12/2015)...  A golden retriever that stayed healthy despite having ... provided a new lead for treating this muscle-wasting disorder, ... of MIT and Harvard and the University of São ... Cell, pinpoints a protective gene that boosts ... The Boston Children,s lab of Lou Kunkel , ...
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... November 24, 2015 --> ... research report released by Transparency Market Research, the global ... a CAGR of 17.5% during the period between 2014 ... - Global Industry Analysis, Size, Volume, Share, Growth, Trends ... prenatal testing market to reach a valuation of US$2.38 ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... environment are paramount. Insertion points for in-line sensors can represent a weak spot ... InTrac 781/784 series of retractable sensor housings , which are designed to ...
(Date:11/24/2015)... Vancouver, BC (PRWEB) , ... November 24, 2015 ... ... to our customer, OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology ... Creation Technologies’ Texas facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device ...
Breaking Biology Technology: