Navigation Links
UIC researchers show protein routes messages in nerve cells

Nerve cells relay messages at blink-of-the-eye speeds by squirting chemicals called neurotransmitters across tiny gaps called synapses to awaiting message receptors. But lots of different receptors and neurotransmitters work simultaneously. Which goes where to send the proper message?

Research reported in the July 20 issue of the Journal of Neuroscience (released online July 13) by a team led by David Featherstone, a University of Illinois at Chicago assistant professor of biology, provides some important preliminary answers.

Featherstone and UIC post-doctoral associate Kaiyun Chen, along with German researchers Carlos Merino and Stephan Sigrist at the European Neuroscience Institute in Goettingen, chose the common fruit fly as their research animal and the chemical glutamate -- present in fruit flies and humans -- as their neurotransmitter of choice.

"It's still unknown how glutamate receptors get to precisely where they're supposed to go on a cell in order to mediate the neurotransmission," said Featherstone. "If the receptors are not in the right place, then the message becomes less efficient. Or if receptors are the wrong type, the message could get completely mixed up."

Such mix-ups can lead to a condition called synaesthesia, where, for example, a sound may have taste, or an image may have a smell. The molecular basis of this condition remains unknown.

"It all comes down to the receptors being in the right place at the right time," said Featherstone. "So our question was, how do these receptors know where they're supposed to go at the time they're supposed to be there?"

Fruit flies proved to be ideal test animals for answering the question because a synapse called the neuromuscular junction in the fly works much like synapses in human brain cells.

"We can quickly mutate the flies," said Featherstone. "We looked among thousands of them for those without the glutamate receptors in the right place at the righ t time. Then we knew that the gene we mutated codes for a protein that is critical for getting those receptors to the right place at the right time."

Featherstone and his colleagues found that a protein called coracle -- known as 4.1 in humans -- links receptors on a nerve cell's membrane to its internal structure, or cytoskeleton. Because 4.1 only interacts with certain receptor proteins, it functions as a sorting agent to ensure that only the correct type of receptor gets attached.

The work by the researchers also identifies the cytoskeleton proteins to which the receptors are tied: actin.

"Many researchers have identified proteins that interact with glutamate receptors, but there's never previously been a link found to the cytoskeleton," said Featherstone. "This work finally ties the receptors to the cell framework to provide a complete picture."

Confirmation of these mechanisms in a mammal such as a mouse or a rat can help researchers understand how nerves need to be reconnected after spinal cord injury, or may open doors to developing drugs that can manipulate proteins that cause neurological diseases in humans.


'"/>

Source:University of Illinois at Chicago


Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... , May 16, 2017   Bridge Patient ... organizations, and MD EMR Systems , an ... partner for GE, have established a partnership to ... product and the GE Centricity™ products, including Centricity ... These new integrations will allow ...
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. (NASDAQ: ... announces the filing of its 2016 Annual Report on Form 10-K ... Commission. ... 10-K is available in the Investor Relations section of the Company,s ... the SEC,s website at http://www.sec.gov . 2016 Year ...
(Date:4/11/2017)... No two people are believed to ... York University Tandon School of Engineering and Michigan ... partial similarities between prints are common enough that ... and other electronic devices can be more vulnerable ... in the fact that fingerprint-based authentication systems feature ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is ... and 8th June 2018 in San Francisco, CA. The Summit brings together current and ... distinguished CEOs, board directors and government officials from around the world to address key ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased ... of over 5.5 million people each year. Especially those living in larger cities are ... - based in one of the most pollution-affected countries globally - decided to take ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive global ... technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, ...
Breaking Biology Technology: