Navigation Links
UGA study explains peaks and troughs of dengue epidemics

Scientists have long known that epidemics of dengue fever wax and wane over a period of several years, but they've never been quite sure why. With the incidence and range of the potentially deadly mosquito-borne illness increasing, understanding the factors that influence these epidemics has never been more important.

A new study by researchers at the University of Georgia suggests that a brief period of cross-immunity conferred by any one of the four viral strains, or serotypes, that cause dengue explains the timing of epidemics.

"We found that since about the mid 1980s, there's been a sequential replacement of the dominant serotype," said lead author Helen Wearing, a post-doctoral researcher at the UGA Institute of Ecology. "So, for example, one year serotype three is 60 percent of the cases and the next year serotype two is dominant and so on. Epidemics of individual serotypes recur every eight to 10 years, but, at the same time, if you look at all the data together, you see about an average three-year cycle with some seasonal component to it."

In addition to helping resolve a long-standing debate in public health, the study, published this week in the early online edition of the journal Proceedings of the National Academy of Sciences, gives researchers a framework that can be used to create models that predict dengue outbreaks in both space and time.

"It's a framework that highlights the key elements you need to take into account while developing a forecasting model," Wearing said. "Because if you were to build a forecasting model without understanding the trends in cross-immunity, you would not necessarily predict what we observe."

The researchers examined 30 years of data from the government of Thailand and from a Thai clinic that keeps what is widely regarded as the most comprehensive set of data on dengue. Southeast Asia has been a dengue hot spot since the 1950s, but the researchers note that their model applies t o other regions where all four dengue strains circulate.

The researchers compared the data with results from mathematical models that explore ?both independently and collectively ?the role factors such as temporary cross-immunity and variation in serotype virulence play in epidemics. They found that cross-immunity alone is enough to create the patterns that are observed in nature.

The study is a major departure from other theories about what drives dengue epidemics. The conventional wisdom is that an amplification of the severity of disease caused by repeat infections with different strains, a phenomenon known as antibody-dependent enhancement, drives the boom and bust cycles of dengue epidemics.

"Temporary cross-immunity has been ignored by the epidemiological community," said study co-author Pejman Rohani, associate professor of ecology and UGA Biomedical and Health Sciences Institute researcher.

"It's discussed in the scientific literature," Wearing added, "but no one ever considers it an important factor in generating the epidemiological cycles."

Cross-immunity, which lasts from two to nine months, results when overall antibody levels created by the body in response to infection by one serotype are high enough to protect against infection by related serotypes. After this period, however, antibody levels drop to levels that are no longer neutralizing but instead are exploited by the dengue virus to enhance replication and cause more severe illness.

"You can't deny the empirical fact that people who get severe dengue may well have had cases before," Rohani said. "But our work suggests it's not the mechanism that's underlying the big-picture pattern that we see."

Several factors are contributing to an increase in dengue epidemics. Global warming is allowing the species primarily responsible for spreading dengue (Aedes aegypti, also known as the yellow fever mosquito) to expand its range. Population g rowth in developing nations is pushing more people into substandard housing in mosquito-infested areas. And the ease of travel brings the virus to areas that were previously dengue-free when a mosquito bites an infected traveler and then spreads it to others. According to the Centers for Disease Control and Prevention, Aedes aegypti and the related Aedes albopictus (the Asian tiger mosquito) have the potential to spread dengue in sporadic outbreaks in the Southern and Southeastern United States.

Rohani said the same modeling techniques he and Wearing used to study dengue can help shed light on the transmission of other multi-strain diseases such as cholera, malaria and influenza. He calls a better understanding of such diseases, "one of the most important issues in public health and epidemiology in general."

"Until now, it's been very much a single-host, single-pathogen type of framework," Rohani said. "Now with avian influenza being very much on everyone's mind, we're beginning to realize that the genetic diversity of infectious agents is really important."


Source:University of Georgia

Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:

(Date:11/19/2015)... YORK , Nov. 19, 2015  Although some ... market is dominated by a few companies, according to ... companies own 51% of the market share of the ... The World Market for Molecular Diagnostic s ... "The market is still controlled by one company ...
(Date:11/17/2015)...  Vigilant Solutions announces today that Mr. Dick ... --> --> Mr. ... partnership at TPG Capital, one of the largest global ... in revenue.  He founded and led TPG,s Operating Group, ... from 1997 to 2013.  In his first role, he ...
(Date:11/12/2015)... 2015   Growing need for low-cost, easy ... been paving the way for use of biochemical ... analytes in clinical, agricultural, environmental, food and defense ... in medical applications, however, their adoption is increasing ... continuous emphasis on improving product quality and growing ...
Breaking Biology News(10 mins):
(Date:11/28/2015)... ... November 28, 2015 , ... • Jeon Jin Bio ... porcine and rodent control solutions , Bird ... oil, works across all sensory modalities including visual, smell, taste and touch, enabling safe, ...
(Date:11/27/2015)... November 27, 2015 ... popularity of companion diagnostics is one of ... market with pharmaceutical companies and diagnostic manufacturers ... tests. . --> ... report on global cancer biomarkers market spread ...
(Date:11/25/2015)... 2015 --> ... - 2020 report analyzes that automating biobanking workflow ... in long-term samples, minimizing manual errors, improving the ... manual errors such as mislabeling or inaccurate sample ... plays a vital role in blood fractionation, DNA ...
(Date:11/25/2015)... , November 25, 2015 ... cat and human plaque and pave the way for more ... problems in cats     --> ... most commonly diagnosed health problems in cats, yet relatively little ... now. Two collaborative studies have been conducted by researchers from ...
Breaking Biology Technology: