Navigation Links
UCSD study finds anthrax toxins also harmful to fruit flies

Deadly and damaging toxins that allow anthrax to cause disease and death in mammals have similar toxic effects in fruit flies, according to a study conducted by biologists at the University of California, San Diego.

Their findings, which appear this week in an early online edition of the journal Proceedings of the National Academy of Sciences, show that fruit flies can be used to study the link between the biochemical activities and physiological effects of anthrax toxins.

Learning how these toxins attack developing and adult tissues is important because it can help scientists understand how they function at the molecular level and may lead to new therapeutic strategies for neutralizing their effects in humans.

Annabel Guichard, a biologist at UCSD and lead author of the study, tracked the ways that two active anthrax toxins, known as lethal factor, or LF, and edema factor, EF, cause cellular damage and death in the fruit fly Drosophila melanogaster. These toxins are required for the anthrax bacterium Bacillus anthracis to evade the host immune system and cause disease.

Using a combination of biochemical, genetic and cell biological approaches, the biologists tested whether or not the anthrax toxins were active in living Drosophila and, if so, whether they acted in the same way as they do in humans. The biologists found that anthrax toxins do alter the same signaling pathways used for cell communication in fruit flies and humans.

"Drosophila is an excellent tool to understand the effect of a toxin on its host and to determine the molecular mechanism underlying its toxicity, because the fly system is already so well characterized," Guichard said. "We knew how anthrax toxins acted on human cells, but this study is the first to show that these toxins are active in fruit flies, suggesting that this fast breeding laboratory animal could also be used to determine the function of a variety of bacterial and viral pathogenic factors. "

Anthrax bacterium secretes three toxins, including LF and EF, and is only known to infect mammals. Because fruit flies lack components required for toxin entry into cells, they cannot actually contract the anthrax disease. However, the study finds that fruit flies can be used to test the effects of a single virulence factor, such as the LF or EF toxins, on signaling pathways shared by flies and humans.

Guichard and her co-authors applied lethal factor toxin to fruit fly embryos and larvae and observed that a component of the expected signaling pathway was inactivated, disrupting the whole molecular system and leading to death. When applied in a more limited fashion, LF interfered with the formation of sutures in the epidermis, resulting in a hole or cleft in thoracic regions of embryos and adults. This developmental process disrupted by LF treatment is similar mechanistically to wound healing, which is mediated by the same signaling pathway in humans.

The EF toxin is also lethal when applied to fly larvae and can cause severe malformation in the wings of adult fruit flies--an effect that can also be understood as an interruption of another unrelated signaling process common to flies and humans.

"We asked the simple question of whether anthrax toxins affecting mammals could act on the fly counterparts of proteins affected in humans, and the answer is yes," said Ethan Bier, a professor of biology at UCSD who was the senior author of the study. "What this means is that similar types of analyses might identify yet unknown proteins shared by flies and humans that can be acted on by anthrax toxins. More generally, this study suggests that flies can be used as a rapid whole organism system to determine the function of a variety of bacterial and viral pathogens of unknown function. One could then test hypotheses obtained from these studies with flies in mammalian organisms such as mice."

The biologists also anticipate that toxins such as the anthrax lethal factor toxin that have multiple host target proteins may be used to simultaneously reduce or eliminate the activities of several related proteins that perform overlapping functions in other diseases or biological processes. Such experimental tools could accelerate progress in various areas of biomedical research.

Guichard first conceived this study in 2002, to apply her experience in molecular genetic studies to research that had medical application. At that time, after the spate of anthrax-laced letters in 2001, anthrax became a charged topic in the research community and the general public.

"Anthrax is still a hot subject because of its possible use as a weapon of bioterrorism and remains a health threat in third world countries," Guichard said. "Anthrax infections can be cured by antibiotics when detected early. But after a certain point, the toxins released in the bloodstream can kill the patient even after antibiotic treatment. The more we understand about how the toxins function, the better we'll be able to design effective co-operative or "adjunctive" therapies."


'"/>

Source:University of California - San Diego


Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/17/2016)... , Nov. 17, 2016 Global Market Watch: ... Biobanks (Disease-Based Banks, Population-Based Banks and Academics) market is to ... for Private Biobanks shows the highest Compounded Annual Growth Rate ... region during the analysis period 2014-2020. North ... of 9.95% followed by Europe at ...
(Date:11/15/2016)...  Synthetic Biologics, Inc. (NYSE MKT: SYN), a ... gut microbiome, today announced the pricing of an ... common stock and warrants to purchase 50,000,000 shares ... the public of $1.00 per share and accompanying ... offering, excluding the proceeds, if any from the ...
(Date:11/14/2016)... SANTA CLARA, Calif. , Nov. 14, ... of the biometric identification market, Frost & ... Global Frost & Sullivan Award for Visionary ... leading player in the biometric identification market ... a multi-modal verification solution for instant, seamless, ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... BELLINGHAM, Washington, USA, and CARDIFF, UK (PRWEB) , ... ... ... neural circuits with very high precision light to control cells — optogenetics — ... brain. In the current state of the art, spatially patterned light projected via ...
(Date:12/8/2016)... Oxford Gene Technology ... Palette an anpassbaren SureSeq™ NGS-Panels mit dem Start ... ein schnelles und kostengünstiges Studium der Varianten bei ... Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, SNV) und ... Panel und ermöglicht eine individuelle Anpassung durch die ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., a ... of the next generation neuro-thrombectomy system for the treatment ... Tudor G. Jovin, MD to join its Scientific Advisory ... a strategic network of scientific and clinical experts to ... of the ANCD BRAIN ® to its clinical ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... exceptionally efficient human mesenchymal stem/stromal cell (hMSC) expansion medium. This single ... engineered to radically streamline culture processes, minimize processing time, significantly decrease production ...
Breaking Biology Technology: