Navigation Links
UCLA researchers unravel a mystery about DNA

UCLA researchers in collaboration with researchers at Rutgers University have solved longstanding mysteries surrounding DNA transcription, the first step in carrying out instructions contained in our genes. The breakthrough described in an article in the Nov. 17 issue of the journal Science reveals important structural information about the gyrations of DNA during transcription and the effects of those gyrations on the process.

The discoveries, which inform our understanding of the structure and mechanics of RNAP -- an enzyme responsible for making RNA from a DNA or RNA template -- can help set the stage for new opportunities in combating bacterial diseases that kill 13 million people worldwide each year.

The researchers used single-molecule spectroscopy to monitor the transfer of energy between -- and hence the distance separating -- pairs of fluorescent chemical tags attached to key structural elements of RNAP and the DNA double helix during initiation of the transcription process.

The changes in the distances between these tags confirmed that transcription proceeds initially through a "scrunching" mechanism in which, much like a fisherman reeling in a catch, RNAP remains in a fixed position while it pulls the flexible DNA strand of the gene within itself and past the enzyme's reactive center to form the RNA product.

These changes are inconsistent with other theories that had suggested that RNAP moves along the DNA strand as a complete block in a process resembling the movement of an inchworm.

The research team is comprised of Achillefs N. Kapanidis, Emmanuel Margeat, Sam On Ho, Ekaterine Kortkhonjia and Shimon Weiss of the UCLA Department of Chemistry and Biochemistry, the Department of Physiology and the California NanoSystems Institute (CNSI). The team collaborated with Richard H. Ebright, Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry, Rutgers University.

The scrunching mo del implies that the scrunched DNA is expelled from the enzyme channel at predictable sites that are available for interaction with transcription regulatory proteins. Beyond resolving the mechanism for initiation, the significance of this work is in pointing out an important regulation "checkpoint." Scrunched DNA is likely to play a major role in future studies of transcription regulation, and possibly become a focus for antibiotic drug discovery efforts.

"These are issues that we were not able to resolve until the development of the single molecule methods that we employed in these studies," Ebright said. "These methods involve detecting and manipulating single molecules, one at a time -- a breakthrough in its own right."

"The study of molecular machines, the dynamics of their moving parts and their translocation on molecular tracks is of great interest to nanotechnologists at the CNSI," said Weiss, the leader of the UCLA team. "Beyond furthering the understanding of transcription regulation, the novel methods and findings of this work will aid future studies of other molecular machines involved in cell replication, transcription and protein synthesis."


Source:University of California - Los Angeles

Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:

(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
(Date:6/3/2016)... , June 3, 2016 ... von Nepal hat ... Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung ... in der Produktion und Implementierung von Identitätsmanagementlösungen. ... Ausschreibung im Januar teilgenommen, aber Decatur wurde ...
(Date:5/24/2016)... care by providing unparalleled technology to leaders of the medical imaging industry.  As such, ... to the range of products distributed by Ampronix. Photo - ... ... ... With ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... SANTA MONICA, Calif. , June 23, 2016  The Prostate Cancer ... to pioneer increasingly precise treatments and faster cures for prostate cancer. Members of ... 77 institutions across 15 countries. Read More About the ... ... ...
Breaking Biology Technology: