Navigation Links
UCI scientists reconstruct migration of avian flu virus

UC Irvine researchers have combined genetic and geographic data of the H5N1 avian flu virus to reconstruct its history over the past decade. They found that multiple strains of the virus originated in the Chinese province of Guangdong, and they identified many of the migration routes through which the strains spread regionally and internationally.

By knowing where H5N1 strains develop and migrate, health officials can better limit the spread of the virus by strategically intervening. Local vaccinations can be better administered by using strains from regions that have repeatedly contributed to infections.

"If you can control the virus at its source, you can control it more efficiently," said Walter Fitch, professor of ecology and evolutionary biology in the School of Biological Sciences at UCI and co-author of the study. "With a road map of where the strain has migrated, you're more likely to isolate the strain that you should be using to make the vaccine."

The study appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

This research offers the first statistical analysis detailing the geographic distribution of influenza A H5N1, the bird flu strain. While previous work informally identified H5N1 strains by location, the UCI analysis is the first to systematically track the migration of H5N1 through its evolutionary history, adding new details that identify the relative importance of the geographic and evolutionary advances the virus makes.

From 192 samples obtained across Eurasia, the UCI team reconstructed the virus's geographic reach and evolution. The analysis shows that Guangdong ?home to a large poultry industry ?is the source of many H5N1 strains that have spread to other provinces and countries. To the south in nearby Indochina, the strains appear largely limited to dispersal among local areas.

Genetic sequences the scientists analyzed suggest that paralle l evolution of different H5N1 strains lets the virus infect and cycle through different host species in a region, regardless of the host or vector species it infects first. This way, the virus can find the right host to spread the infection to the next location. This parallel evolution ?the independent evolution of similar traits ?enables H5N1 to spread quickly, the scientists believe.

"The ability to develop the right mutation allows the virus to hop from one host type to the next," said Robert Wallace, UCI postdoctoral researcher and lead author of the study. "By spreading across a large area, the virus in essence can run multiple experiments in multiple locations, increasing the likelihood that it will mutate into a form that can be transmitted from human to human."

Avian flu has been isolated almost exclusively among bird populations. The H5N1 virus has only sporadically been passed on from a bird host to humans; there is little evidence that the virus can efficiently be passed on from human to human. Although fewer than 300 recorded human cases of this flu have been recorded worldwide, its high mortality rate raises concerns that if the virus mutates to where humans can pass it on, a flu pandemic may occur.


'"/>

Source:University of California - Irvine


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. UCLA scientists transform HIV into cancer-seeking missile
8. RNA project to create language for scientists worldwide
9. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
10. To control germs, scientists deploy tiny agents provocateurs
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/24/2017)... -- EyeLock LLC, a leader of iris-based identity authentication ... solution on the latest Qualcomm® Snapdragon™ 835 mobile ... Congress 2017 (February 27 – March 2, ... Stand 3E10. The Snapdragon 835 ... combination of hardware, software and biometrics technologies ...
(Date:2/21/2017)... , February 21, 2017 ... 70 Millionen US-Dollar wachsen. Nach einem Gespräch mit mehr als ... einige Hindernisse zu überwinden gilt, um diese Prognose zu ... ... anderem die Mobilisierung der finanziellen Mittel für die Biobank, ...
(Date:2/13/2017)... FRANCISCO , Feb. 13, 2017  RSA ... centralized platform that is designed to enhance fraud ... latest release in the RSA Fraud & Risk ... enable organizations to leverage additional insights from internal ... tools to better protect their customers from targeted ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... , March 24, 2017  Infectex Ltd., a ... today announced positive results of a Phase 2b-3 clinical ... regimen in patients with multidrug-resistant pulmonary tuberculosis (MDR-TB). SQ109 ... at Sequella, Inc. ( USA ) and ... A total of 140 patients were enrolled in a ...
(Date:3/24/2017)... March 24, 2017 Agenus Inc. (NASDAQ: AGEN), ... antibodies and cancer vaccines, today announced participation at the ...  Annual William Blair and Maidstone Life Sciences conference "Cancer ... in New York, NY . Agenus ... 29 at 9:40 am: Robert B. Stein , ...
(Date:3/23/2017)... , March 23, 2017  SeraCare ... to global in vitro diagnostics manufacturers and ... the industry,s first multiplexed Inherited Cancer ... testing by next-generation sequencing (NGS). The Seraseq™ ... developed with input from industry experts to ...
(Date:3/23/2017)... NetworkNewsWire Editorial Coverage  ... Cancer remains one of the world,s ... systems, in terms of costs and resources. However, as the ... of innovative and efficient therapies that demonstrate higher chances of ... cancer treatments, a growing number of patients receiving immuno-oncology therapies ...
Breaking Biology Technology: