Navigation Links
U of MN researchers turn cord blood into lung cells

Researchers at the University of Minnesota have, for the first time, coaxed umbilical cord blood stem cells to differentiate into a type of lung cell.

The cord blood cells differentiated into a type of lung cell called type II alveolar cells. These cells are responsible for secreting surfactant, a substance which allows the air sacs in the lungs to remain open, allowing air to move in and out of the sacs. The cells are also responsible for helping to repair the airway after injury.

"In the future, we may be able to examine cord blood from babies who have lung diseases, such as cystic fibrosis, to do more research to understand how these diseases evolve as well as to develop better medical treatments," said David McKenna, M.D., assistant professor of lab medicine and pathology and medical director of the Clinical Cell Therapy Lab at the University of Minnesota Medical Center, Fairview.

The research paper is currently available online, and will be published in the Nov. 7, 2006, issue of the journal Cytotherapy.

Type II alveolar cells develop late in fetal development, which is why some premature babies are born with underdeveloped lungs. The cells and the air sacs as a whole continue to mature and develop through a child's first few years of life.

Now the researchers will try to better characterize the cells, so that in the future, the cells could be used as a research tool to better understand lung development and disease. The cells may also be useful as a way to test potential new drugs.

To differentiate the lung cells from the cord blood, McKenna and his team first derived the Multi-Lineage Progenitor CellTM (MLPCTM) from umbilical cord blood. This stem cell, which was first isolated and characterized by BioE®, Inc., St. Paul, is a precursor cell that can be expanded in culture, then differentiated into different types of tissue representative of all three embryonic lineages, endoderm, m esoderm and ectoderm.

In this series of experiments, McKenna and his group cultured the MLPC and differentiated it into the lung cells, an endoderm-type cell. By testing the cells that grew with various methods, they were able to find cells that exhibited key markers present in type II alveolar cells.
'"/>

Source:University of Minnesota


Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... SEATTLE , Nov. 30, 2016  The ... Allen Cell Collection: the first publicly available collection ... stem cells that target key cellular structures with ... Medical Research, these powerful tools are a crucial ... cells to better understand what makes human cells ...
(Date:11/30/2016)... November 2016   Merck , ein ... Unterzeichnung einer Reihe von Vereinbarungen mit Evotec ... AG Screeningleistungen für Mercks Palette genetischer Reagenzien ... auf diese Bibliotheken in Kombination mit Evotecs ... Weg zur Ermittlung und Erforschung neuer Arzneimitteltargets.    ...
(Date:11/30/2016)... Woburn, MA (PRWEB) , ... November 30, 2016 ... ... broadband light sources for advanced technology applications, introduces the 5th generation, ultra-bright, Laser-Driven ... the highly successful Laser-Driven Light Source (LDLS™) technology, the EQ-77 offers higher radiance ...
(Date:11/30/2016)... ... 30, 2016 , ... ProMIS Neurosciences (“ProMIS” or the “Company”), ... today announced that all five of its validated monoclonal antibody (mAb) therapeutic candidates ... prion-like forms of Amyloid beta (Aß) in vitro. , “We previously demonstrated that ...
Breaking Biology Technology: