Navigation Links
U-M scientist to talk about tissue engineering at AAAS

Scientists have a pretty good handle on how to teach human cells to do tricks in a laboratory---things like getting soft cells from the mouth's lining to form bone.

But in the real world, accomplishing such feats is more complex. Regenerating the jaw bone of a person undergoing radiation therapy for cancer means managing the constant bacteria bath of a human mouth as well as compensating for the damage of radiation.

"It's not just a question of whether we can make new tissue in a perfect condition. Now we're mimicking what can really happen in a person, and we don't know if the rules of regeneration might be totally different," said Paul Krebsbach, associate professor at the U-M School of Dentistry.

Krebsbach is scheduled to participate in a panel titled "Tissue Engineering for the Head and Neck," at the AAAS annual meeting Feb. 17-21 in Washington, D.C. The tissue engineering panel is slated for Feb. 20 1:45-3:15 p.m.

In the broadest sense, tissue engineering refers to growing human tissue through artificial means.

Typically it involves harvesting a small sample of cells, treating them in the lab, then reintroducing the cells into a damaged area, like a jaw bone damaged too badly to simply heal on its own. A tiny scaffold helps direct the engineered cells to the right place, then dissolves once the cells begin to generate to fill in the wound.

"In certain kinds of defects, the body cannot heal itself and the body needs a jumpstart," Krebsbach said. To heal a large wound, like that created when a cancerous tumor is removed from the jaw, that often means taking a bone graft from someplace like the hip. That approach has problems both for the wound at the donor site and for the site where it is implanted.

In addition to discussing the sometimes-messy real world applications of tissue engineering, Krebsbach plans to talk at AAAS about the potential for combining seemingly unrelated therapies to improve the benefits of tissue engineering.

For example, parathyroid hormone is given to patients with osteoporosis, a condition in which bone quality declines leaving them fragile and prone to breaking. Parathyroid hormone stimulates bone growth in these patients, and Krebsbach sees potential to use it for similar gains in tissue engineering new bone.

Bone morphogenetic proteins help cells differentiate into specific kinds of bone, and encouraging cells to make more BMPs during tissue engineering also can ramp up the effects.

"Together these therapies can overcome compromised environments," he said. "Combining therapies can help us overcome some of the complications of current therapies, too."

These approaches are not yet being tested in humans, but Krebsbach said some small clinical trials are under consideration.

If the combination therapy approach works, Krebsbach said the next step would be working with engineers to develop anatomically correct scaffolding with the same curvature and contours of natural bones. That would help a patient develop new bone almost indistinguishable from nature's original equipment.

Many researchers at University of Michigan have focused their tissue engineering efforts on the head and neck, in part because U-M Dentistry plays a leading role in the effort. Dentists have a long tradition of finding ways to fill tooth cavities that will not heal on their own, Krebsbach said, and that has led to research in biomaterials, bone and connective tissue function, and then tissue engineering.

At Michigan, tissue engineering collaboration includes dentists, M.D.s and engineers, among others. They all bring a different perspective, and it leads to scientific advances that couldn't happen in any one discipline, Krebsbach said.

"That's the beauty of tissue engineering. It has to be multi-disciplinary to work," he said.


'"/>

Source:University of Michigan


Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
3. UAB scientists discover the origin of a mysterious physical force
4. Fox Chase Cancer Center scientists identify immune-system mutation
5. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
6. U-M scientists find genes that control growth of common skin cancer
7. NC State scientist finds soft tissue in T. rex bones
8. UCLA scientists transform HIV into cancer-seeking missile
9. RNA project to create language for scientists worldwide
10. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
11. To control germs, scientists deploy tiny agents provocateurs
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology ... object recognition technologies, today announced that the MegaMatcher ... cards was submitted for the NIST Minutiae ... passed all the mandatory steps of the evaluation ... is a continuing test of fingerprint templates used ...
(Date:11/15/2016)... Md. , Nov. 15, 2016  Synthetic ... company developing therapeutics focused on the gut microbiome, ... offering of 25,000,000 shares of its common stock ... common stock at a price to the public ... proceeds to Synthetic Biologics from the offering, excluding ...
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... , ... December 02, 2016 ... ... a consortium of pharmaceutical and biotechnology companies dedicated to collaboratively developing improved ... interested in supplying a vendor-supported, portable online UHPLC, with robust, probe-based sampling. ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected ... of 7.3% during the forecast period of 2016 to 2021 dominated ... accounted for the largest share of immunohistochemistry (IHC) market, by end ... , , ... market spread across 225 pages, profiling 10 companies and supported with ...
(Date:11/30/2016)... today announced the appointment of Joshua F. Coleman , ... Dr. Coleman will oversee clinical content development and curation of ... software suite empowers molecular pathologists with a seamless workflow for ... from quality control through reporting. ... , , ...
(Date:11/30/2016)... RATON, Fla. , Nov. 30, 2016 ... biotherapeutic products, is pleased to announce the addition of ... Avenue Kearney, Nebraska . The 15,200 ... business on November 29th, 2016 and brings the total ... Ileana Carlisle , BPC,s Chief Executive ...
Breaking Biology Technology: