Navigation Links
Turn-ons and turn-offs for neurons

Our brain consists of billions of nerve cells enabling to learn, remember and reason. Every time we think and experience, touch, smell or fear, millions of neurons in our brain becomes active. These nerve cells communicate with each other by chemical and electrical impulses to compute incoming sensory information and integrate it via distinct brain regions. With 20,000 - 25,000 genes in our genome, most also expressed in neurons, there is now little doubt that neurons respond to challenging environments by adjusting the expression of genes for appropriate brain functions. Stress, addiction, learning and disease are all believed to change neuronal gene expression by mechanisms involving gene accessibility without changes in DNA sequences, a process called epigenetics ("above and beyond the gene”).

Switching gene expression “on” and “off” is of utmost importance when studying gene function in the adult nervous system. In the early 1990s, scientists described a tetracycline-controlled gene expression systems (Tet systems), which allow the regulation of gene expression by externally applied substances. The Tet-regulated gene expression can be used to analyze involvement of genes for example in cognition in the mouse, as was shown in key studies from 1996. But in spite of the published success, others scientists report some difficulties: in some experiments the full reactivation of Tet-regulated genes failed. Mazahir T. Hasan and colleagues at the Max Planck Institute for Medical Research in Heidelberg have therefore systematically examined individual components of the Tet systems and delineated the necessary conditions for reversible control of gene expression in neurons.

In the June 20th issue of the online, open-access journal PLoS ONE, they report that genes which had been inactive in neurons during early mouse development become functionally silenced in the adult brain. Intriguingly, Hasan and colleagues found that gene silencing in the adult b rain can be avoided by making neurons produce high levels of gene-specific activators which facilitate “un-silencing” of previously silenced genes. These findings have important implications in experimental research that makes use of reversible gene expression tools to switch genes on and off. Neuroscientists need such gene switches to investigate the cause-and-effect relationship between gene activity, neuronal physiology, and animal behavior. Hence, this new research is an important step in both the development of highly reliable gene-switches for experimental neuroscience and in our understanding of mechanisms governing gene regulation in the brain. Indeed, the epigenetic mechanisms in charge of switching genes “on” or “off” play an essential role when our brain learns and stores information, and when our brain reacts to injury and disease.


'"/>

Source:Public Library of Science


Related biology news :

1. First real-time view of developing neurons reveals surprises, say Stanford researchers
2. One gene links newborn neurons with those that die in diseases such as Alzheimers
3. Researchers make surprise discovery that some neurons can transmit three signals at once
4. Speak up: Louder neurons form more connections
5. Eating, body weight regulated by specific neurons
6. New neurons take baby steps in the adult brain
7. Algal protein in worm neurons allows remote control of behavior by light
8. Picking apart how neurons learn
9. Researchers get neurons and silicon talking
10. Mechanism for memory revealed in neurons of electric fish
11. Attention shoppers: Researchers find neurons that encode the value of different goods

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/29/2017)... -- higi, the health IT company that operates the largest ... , today announced a Series B investment from BlueCross ... new investment and acquisition accelerates higi,s strategy to create ... health activities through the collection and workflow integration of ... and secures data today on behalf of over 36 ...
Breaking Biology News(10 mins):
(Date:6/23/2017)... , ... June 23, 2017 ... ... launch of a redesigned, easier-to-navigate website for all six of their healthcare ... physicians, nurses, dentists, pharmacists, physical and occupational therapists, and biotechnicians, DocCafe.com and ...
(Date:6/22/2017)... Colorado (PRWEB) , ... June 21, 2017 , ... ... RTP regional office in North Carolina, and engages Timothy Reinhardt to manage the ... of quality leadership at Pfizer Inc, with his most recent role as the ...
(Date:6/22/2017)... ... June 22, 2017 , ... Ovation ... infertility as a disease, bringing new hope for prospective parents who are challenged ... meeting to back the World Health Organization’s designation in hopes of changing the ...
(Date:6/22/2017)... ... , ... The first human cell line HeLa, established in 1951, has entered ... of human cell lines with HeLa cells were published. Until recently, cross-contamination and misidentification ... is associated with dramatic consequences for research. , In this educational webinar, which ...
Breaking Biology Technology: